

A NEW APPROACH TO DETECT P2P TRAFFIC BASED ON SIGNATURES ANALYSIS

UMA NOVA ABORDAGEM PARA DETECTAR TRÁFEGO P2P COM BASE NA ANÁLISE DE ASSINATURAS

UN NUEVO ENFOQUE PARA DETECTAR EL TRÁFICO P2P BASADO EN EL ANÁLISIS DE FIRMAS

Ammar Mazri¹, Merouane Mehdi¹

e534994 https://doi.org/10.47820/recima21.v5i3.4994

RECEIVED: 01/18/2024 ABSTRACT

APPROVED: 02/18/2024

PUBLISHED: 03/04/2024

In recent years, peer-to-peer (P2P) networks have gained more popularity in the form of file-sharing applications, such as uTorrent and eMule, that use BitTorrent and eDonkey protocols. With such popularity comes security risks and external attacks; the latter is often associated with information hacking. In this paper, we will introduce a new way to monitor and detect the use of each of the P2P applications within the corporate network. Based on the inspection of traffic packets in order to extract digital signatures of these applications using the open-source packet analysis program "Wireshark," in addition to using the well-known Snort intrusion detection system (IDS) with a number of adequate and new rules, this solution can allow us to receive powerful warning messages that detect the presence of P2P applications inside the network. We implemented our rules in Snort IDS. Over a period of time, this solution allowed us to achieve 96% effectiveness in detecting the presence of P2P applications.

KEYWORDS: Peer-to-Peer (P2P). Digital signatures E-Donkey. µtorrent. EMule. BitTorrent. Snort IDS.

RESUMO

Nos últimos anos, as redes peer-to-peer (P2P) ganharam mais popularidade na forma de aplicativos de compartilhamento de arquivos, como uTorrent e eMule, que usam protocolos BitTorrent e eDonkey. Com essa popularidade vem os riscos de segurança e ataques externos; o último é frequentemente associado a hackers de informações. Neste artigo, apresentaremos uma nova maneira de monitorar e detectar o uso de cada um dos aplicativos P2P dentro da rede corporativa. Com base na inspeção de pacotes de tráfego para extrair assinaturas digitais desses aplicativos usando o programa de análise de pacotes de código aberto "Wireshark", além de usar o conhecido sistema de detecção de intrusão Snort (IDS) com várias regras adequadas e novas, esta solução pode nos permitir receber mensagens de aviso poderosas que detectam a presença de aplicativos P2P dentro da rede. Implementamos nossas regras no Snort IDS. Ao longo de um período de tempo, essa solução nos permitiu alcancar 96% de eficácia na detecção da presenca de aplicações P2P.

PALAVRAS-CHAVE: Peer-to-Peer (P2P). Assinaturas digitais E-Donkey. µtorrent. Emule. BitTorrent. Snort IDS.

RESUMEN

En los últimos años, las redes peer-to-peer (P2P) han ganado más popularidad en forma de aplicaciones para compartir archivos, como uTorrent y eMule, que utilizan protocolos BitTorrent y eDonkey. Con tal popularidad vienen los riesgos de seguridad y los ataques externos; este último se asocia a menudo con la piratería de información. En este artículo, presentaremos una nueva forma de monitorear y detectar el uso de cada una de las aplicaciones P2P dentro de la red corporativa. Basado en la inspección de paquetes de tráfico para extraer firmas digitales de estas aplicaciones usando el programa de análisis de paquetes de código abierto "Wireshark", además de usar el conocido sistema de detección de intrusión Snort (IDS) con una serie de reglas adecuadas y nuevas, esta solución puede permitirnos recibir poderosos mensajes de advertencia que detectan la presencia de aplicaciones P2P dentro de la red. Implementamos nuestras reglas en Snort IDS. Durante un

¹ DIC, Laboratory, Electronics Department, University Blida, Algeria.

A NEW APPROACH TO DETECT P2P TRAFFIC BASED ON SIGNATURES ANALYSIS Ammar Mazri, Merouane Mehdi

período de tiempo, esta solución nos permitió lograr una efectividad del 96% en la detección de la presencia de aplicaciones P2P.

PALABRAS CLAVE: Peer-to-Peer (P2P). Firmas digitales E-Donkey. µtorrent. EMule. BitTorrent. Snort IDS.

INTRODUCTION

Over the past few years, P2P applications have gained immense popularity in the online realm. These applications allow users to share files and exchange data with other P2P users worldwide. However, this widespread accessibility also introduces potential risks, as it exposes data not only to legitimate users but also to potential intruders. Among the well-known P2P applications widely used today are µTorrent and eMule. Due to their nature as file transfer tools, these applications are susceptible to exploits that can result in the exposure of sensitive data, network overload, and the distribution of malicious software like spyware, bots, and viruses. Malicious actors with nefarious intent can exploit vulnerabilities in the protocols used by P2P applications to target peer-to-peer networks. The objective of this thesis is to devise an effective strategy for detecting the usage of P2P applications within a network and mitigating the associated risk factors involved in their utilization.

In recent years, P2P applications have become very popular in the internet world. Anyone can install a P2P application, which allows us sharing files and exchange data with all other users (P2P) around the world. This process makes the data available to others as well as intruders. Examples of some well-known applications for P2P used in our time that have great popularity there are µtorrent and emule, since these applications are transfer tools, they are vulnerable to exploits that involve exposure of sensitive data, network overloading, and the distribution of malware that includes spyware, bots, and viruses. Criminals with malicious intentions can attack peer-to-peer networks by exploiting vulnerabilities in the protocols used by P2P applications in the network. Our goal of this thesis is to develop an effective plan to detect the presence of using P2P applications.

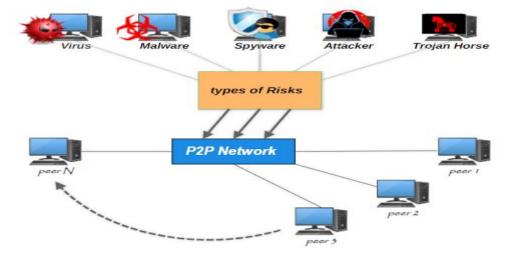
For this purpose, in order to monitor the network and detect any uses of P2P applications and minimize the risks generated by them. In our work, we will depend on the intrusion detection system "Snort" and a deep analytical study of P2P protocols. The work is divided into the following steps:

Step 1: Deep analysis of traffic resulting from the use of P2P applications by the analyzer program "Wireshark". Wireshark is used for traffic analysis. This type of tool tries to capture network packets and tries to display this belt data in as much detail as possible [1].

Step 2: Extract signatures of protocols P2P (BitTorrent and E-donkey)

Step 3: Implantation the extracted digital signatures of the P2P protocols into the intrusion detection system "Snort".

Step 4: Discuss the results of monitoring the recorded network traffic to confirm the effectiveness of this work.



A NEW APPROACH TO DETECT P2P TRAFFIC BASED ON SIGNATURES ANALYSIS Ammar Mazri, Merouane Mehdi

BACKGROUND AND RELATED WORK

1 BACKGROUND

In this section we provide some background on peer-to-peer networks and describe some applications of P2P. Peer-to-peer networks (P2P) are a type of decentralized network architecture that allows users to share files between them without going through a server. There are two types of P2P architecture: unstructured and structured [2]. In a structured system, peers are organized to search other peers more efficiently, but in an unstructured system, peers are randomly connected to certain other peer subsets [3]. There are three models of unstructured P2P network architecture [4]. P2P applications have become attracting millions of users after their appearance and are very popular in the Internet World. However, Peer-to-peer applications also introduce security risks that may put your information, your computer or your network in danger [5]. these applications still pose a threat to user privacy. Because they are considered very effective in distributing viruses, bots to launch DDOS attacks, spyware, malware, trojans, etc., by sharing fake files or other ways.

Figure: The risk of using P2P applications

Among the P2P file sharing applications that are very popular (μ torrent [6] and emule [7]). emule is a popular file sharing application which is based on the eDonkey and Kademlia protocol [8]. μ Torrent is a very popular file sharing application that implements the BitTorrent protocol on the internet, and consumes a large bandwidth, which affects the service within the corporate network and causes problems of the same denial of Service (DOS) [9]. We always need a new way to detect the use of these applications within the network of the company and the ability to control or prevent them based on intrusion detection systems.

In addition to intrusion detection systems that monitor the traffic passing through the network and examine the payload of each packet, help us detect P2P applications, based on the signature of the protocols used by p2p applications. There are many open-source intrusion detection systems available, for example snort [10]. It monitors each load of the package and raises alerts when a

A NEW APPROACH TO DETECT P2P TRAFFIC BASED ON SIGNATURES ANALYSIS Ammar Mazri, Merouane Mehdi

predefined signature is matched. Only, we always need to constantly track the development of P2P applications and extract new signatures.

2 RELATED WORK

2.1 Packet inspection (P2P Traffic analysis)

In-depth analysis of the packets by use Wireshark will be performed for each previous operating state to extract digital signatures of protocols P2P, the latter will allow us to identify the use of each protocol. The figure 1 shows the working architecture used for analysis part.

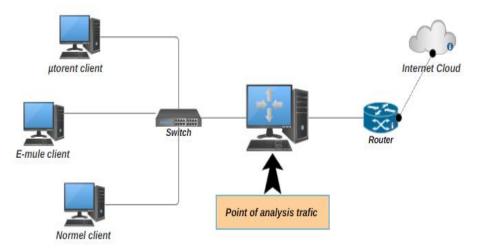


Figure 1: Analysis of traffic by Wireshark

A. Traffic of Application emule

1- After launching emule client and capture packets that sent and received while contacting between servers and other peers by Wireshark as shown in the figure

No.	Time	Source	Destination	Protocol	Length Info
	77 32.466787	10.0.0.3	59.126.251.46	eDonkey	167 eDonkey TCP: Hello
	82 33.127163	59.126.251.46	10.0.0.3	eDonkey	170 eDonkey TCP: Hello Answer
	84 33.282754	10.0.0.3	59.126.251.46	eDonkey	65 eMule Extensions TCP: Second Identification State
	88 33.844041	59,126,251,46	10.0.0.3	eDonkey	88 eMule Extensions TCP: Hello, eMule Extensions TCP: Second Identification State
	91 33.900927	10.0.0.3	59.126.251.46	eDonkey	68 eMule Extensions TCP: Unknown
	94 34.355990	59.126.251.46	10.0.3	eDonkey	137 eMule Extensions TCP: Public Key
	95 34.410249	10.0.0.3	59.126.251.46	eDonkey	162 eMule Extensions TCP: Hello, eMule Extensions TCP: Public Key
	99 35.025006	10.0.0.3	59.126.251.46	eDonkey	109 eMule Extensions TCP: Signature
	100 35.277777	59.126.251.46	10.0.3	eDonkey	109 eMule Extensions TCP: Signature
	122 49.566192	10.0.0.3	91.208.184.143	eDonkey	48 eDonkey UDP: Server Status Request
	126 55.221325	10.0.0.3	212.83.184.152	eDonkey	48 eDonkey UDP: Server Status Request
	137 60.737926	10.0.0.3	183.136.232.234	eDonkey	48 eDonkey UDP: Server Status Request
	147 66.255303	10.0.0.3	62.210.28.77	eDonkey	48 eDonkey UDP: Server Status Request
	172 70.676874	10.0.0.3	47.37.145.12	eDonkey	48 eDonkey UDP: Server Status Request

Figure 2: E-Donkey packets captured during connection establishment

We notice there are multiple of UDP and TCP packets. In the first, emule operating step, which allows us establishment connection to download files. If we want to identify and explain all messages of E-Donkey protocol, we will need to study and analyze these requests in detail.

A NEW APPROACH TO DETECT P2P TRAFFIC BASED ON SIGNATURES ANALYSIS Ammar Mazri, Merouane Mehdi

According to figure (2), the establishment of the connection with the server, "**59.126.251.46**" begins with a "*Hello Client*" query. The contents of this request are detailed in the figure 3 below:

	All and a second co		rot															
~	eDor	nkey	y Me	2558	age		_						Pr	oto	col	ID		
	F	Prot	toco	1:	eDo	onke	y (Øxe	3)	-								
	1	less	sage	e Le	engt	th:	108					/		Me	SSa	ige L	ength	
	1	less	sage		/pe:	: He	110	(0	×01)		/		/					
		Iser	- ha	sh	ler	ngth	1: 1	6			/							
	~ .					-				/		/				Mes	sage ID	
			-						721		111	100	0-5	630	-	6f6	0	
											111	043	bec:	0000	140	616	u .	
			lie				0.2	11.	200.	.0	/			/				
			Port				0.2	11.	200.	.0	/		/	/				
c							20.2	11.	200.	.0	/							
	02	F	Port	:: 4	662	2	-	11. 6c		_	00	01	10	6e	49	36	1	•••••nI6
0030		F 00	Port 84	95	00	00	-	6c	00	00	00 4c							c Lomx
0030 0040	72	60 65	84 Øe	95 a1	00 13	00 d4	e3	6c c5	00 63	00 07	4c	6f	6d	78	dЗ	c8		c · Lomx · ·
0030 0040 0050	72 00	60 65 36	84 82 12	95 a1 07	00 13 00	00 d4 00	e3	6c c5 02	00 63	00 07	4c 01	6f 14	6d	78 68	d3 74	c8 74	гР. . <mark>б.</mark>	c·Lomx···
0030 0040 0050 0060	72 00 70	60 65 36 3a	84 82 12	95 a1 07 2f	00 13 00 77	00 d4 00 77	e3 50 00	6c c5 02 2e	00 63 01 61	00 07 00	4c 01 75	6f 14	6d 00 65	78 68 2e	d3 74	c8 74 72	р://www.	c Lomx htt
 0030 0040 0050 0060 0070 0080	72 00 70 67	60 b5 36 3a 03	84 0e 12 2f 01	95 a1 07 2f 00	00 13 00 77 11	00 d4 00 77 3c	e3 50 00 77	6c c5 02 2e 00	00 63 01 61 00	00 07 00 4d	4c 01 75	6f 14 6c 00	6d 00 65 f9	78 68 2e 40	d3 74 6f 12	c8 74 72 40	р://www. g	aMule.or

Figure 3: Capture the packet (E-Donkey-Hello)

The server responds to this request by "*Hello Answer*", the contents of this query are detailed in the figure 4:

			toco	-					_									
				or:	eDo	onke	y ((Øxe	3)									
		Mess	sage	e Le	engt	:h:	111	1	1.5									
	1	Mess	sage	= T)	/pe:	He	110	An	swer	- (4	3×40	=)						
	~ .		-	-														
			-						BdZh	Dee	Sac	1920	1837	79.30	651	l6fc3		
							-	6.2			Jac	-520	.05,	Jac		Lonc.	·	
							. 14	0.2	51.4	+0								
-			ort	- 4	1662	-												
C																		
0030	00	e3	bb	a6	00	00	e3	61	00	00	00	4c	71	aØ	9e	зd	•••	••••Lq••=
								6 1 9a								3d 2e	{·j···7·	
0040	7 b	Øe	6a	c4	92	d8	37		c6	51		cЗ	зb	7e	fb	2e		·Qo · ;~· .
0040 0050	7b 36	0e 12	6a 07	c4 00	92 00	d8 00	37 02	9a	c6 00	51 01	6f	c3 00	3b 68	7e 74	fb 74	2e 70	{·j···7·	•Qo•;~•.
0040 0050 0060	7b 36 3a	0e 12 2f	6a 07 2f	c4 00 65	92 00 6d	d8 00 75	37 02 6c	9a 01	c6 00 2d	51 01 70	6f 18	c3 00 6f	3b 68 6a	7e 74 65	fb 74 63	2e 70 74	{·j···7· 6····	·Qo·;~·. ····http -project
0040 0050 0060 0070	7b 36 3a 2e	0e 12 2f 6e	6a 07 2f 65	c4 00 65 74	92 00 6d 03	d8 00 75 01	37 02 6c 00	9a 01 65	c6 00 2d 3c	51 01 70 00	6f 18 72	c3 00 6f 00	3b 68 6a 03	7e 74 65 01	fb 74 63 00	2e 70 74 f9	{·j···7· 6····· ://emule	·Qo·;~· ····http -project
0030 0040 0050 0060 0070 0080 0080	7b 36 3a 2e 40	0e 12 2f 6e 12	6a 07 2f 65 40	c4 00 65 74 12	92 00 6d 03 03	d8 00 75 01 01	37 02 6c 00 00	9a 01 65 11	c6 00 2d 3c 80	51 01 70 00 0c	6f 18 72 00	c3 00 6f 00 03	3b 68 6a 03 03	7e 74 65 01 01	fb 74 63 00 00	2e 70 74 f9 fa	{·j···7· 6····· ://emule .net····	·Qo·;~·. ····http -project <····

Figure 4: Capture the Paquet (server hello answer)

After connecting, the E-DONKEY server and the client starts the exchange of additional parameters that relate to the identification and sharing options.

The client sends «*the second identification state*» to ensure communication with the server. Subsequently, the server responds with a query that contains the two previous information in «*Hello & second identification state*».

The server offers a «*Public -key*» to the client by request, to index the client's ID at the server. The client responds with a query containing the confirmation of this key.

To complete the identification, the client proposes to the server a special signature that will identify the downloads or sharing, by a signature request. The server responds with a request containing the signature which will later identify all the tasks of this client.

The client automatically establishes UDP connections with the servers in this network to constantly make status updates, using the *«Server status request»* query.

2- Search of file: Once you create a connection with E-Donkey Server. Messages between the server and the client are passed using UDP.

A NEW APPROACH TO DETECT P2P TRAFFIC BASED ON SIGNATURES ANALYSIS Ammar Mazri, Merouane Mehdi

No.		Time	Source	Destination	Protocol	Length	Info
	102	32.101501	10.0.0.3	80.208.228.241	eDonkey	62	eDonkey UDP: Reask File Ping
	103	32.461742	80.208.228.241	10.0.0.3	eDonkey	914	eDonkey UDP: Search File Results
	104	32.461850	80.208.228.241	10.0.0.3	eDonkey	899	eDonkey UDP: Search File Results
	105	32.466836	80.208.228.241	10.0.0.3	eDonkey	859	eDonkey UDP: Search File Results
	106	32.496497	80.208.228.241	10.0.0.3	eDonkey	925	eDonkey UDP: Search File Results
	107	32.767910	80.208.228.241	10.0.0.3	eDonkey	843	eDonkey UDP: Search File Results

Figure 5: E-Donkey packets captured during a search emule

The client sends a request to the server "80.208.228.241", of the «Reask File Ping» type to locate the file and the server responds with a query «Search file results». The emule client uses the «search File» query to request information about searching, this query is broadcast to all servers, only the primary server of the E-Donkey network responds to LOWID.

3- The file download using emule is based entirely on the KADEMLIA protocol, the latter operates according to a UDP-based mechanism for downloading even if the TCP ports are blocked. The main queries of this protocol are represented in the following figure 6:

No.	Time	Source	Destination	Protocol	Length	Info
	7 4.641334	10.0.0.3	1.85.248.135	eDonkey	64	Kademlia UDP: KADEMLIA2_HELLO_REQ
	10 5.095082	1.85.248.135	10.0.3	eDonkey	80	Kademlia UDP: KADEMLIA2_HELLO_RES
	11 5.469505	10.0.0.3	1.85.248.135	eDonkey	77	Kademlia UDP: KADEMLIA2_REQ
	12 6.015294	1.85.248.135	10.0.3	eDonkey	111	Kademlia UDP: KADEMLIA2_RES
	98 31.254452	10.0.0.3	220.190.11.227	eDonkey	64	Kademlia UDP: KADEMLIA2_HELLO_REQ
1	190 88.574234	10.0.0.3	58.253.40.192	eDonkey	64	Kademlia UDP: KADEMLIA2_HELLO_REQ
2	214 98.658998	10.0.0.3	117.62.48.69	eDonkey	77	Kademlia UDP: KADEMLIA2_REQ
4	\$57 108.050690	10.0.3	106.84.201.217	eDonkey	77	Kademlia UDP: KADEMLIA2_REQ

Figure 6: E-Donkey packets captured when downloading a file

According to figure 6, it can be seen that the functioning of the KADEMLIA protocol is based on four main types of queries: *KADEMLIA_hello_REQ*, *KADEMLIA_hello_RES*, *KADEMLIA2_REQ*, *KADEMLIA2_RES*.

B. Traffic of Application µTorrent

1- When we need to get the Metadata of file from the sites that offers torrents. We notice through the HTTP requests that are exchanged while connecting for obtaining the ".torrent" file, that are showing in figure 7.

A NEW APPROACH TO DETECT P2P TRAFFIC BASED ON SIGNATURES ANALYSIS Ammar Mazri, Merouane Mehdi

-	Time		Source		D	estination		Pro	tocol L	ength Info								
44	3.957270)	10.0.0.2		1	84.26.14	.170	HT	TP .	623 GET /	torrent/	6080995	74787510	DE7A9C68	71643CD	5248C15	1A76.tor	rent?title=[limetorrents.info]Lilith.CzarCre
50	4.128946	j	104.26.1	4.170	1	0.0.0.2		HT	ſP	907 HTTP/:	1.1 301	Moved P	ermanent	tly				
003	30	Зf	5c	79	49	00	00	47	45	54	20	2f	74	6f	72	72	65	?\yI · GE T /torre
004	40	6e	74	2f	36	30	38	43	39	39	35	37	34	37	42	37	35	nt/608C9 95747B75
005	50	31	44	45	37	41	39	43	36	38	37	31	36	34	33	43	44	1DE7A9C6 871643CD
006	50	35	32	34	42	43	31	35	31	41	37	36	2e	74	6f	72	72	524BC151 A76.torr
007	70	65	6e	74	3f	74	69	74	6c	65	3d	5b	6c	69	6d	65	74	<pre>ent?titl e=[limet</pre>
008	80	6f	72	72	65	6e	74	73	2e	69	6e	66	6f	5d	4c	69	6c	orrents info]Lil
009	90	69	74	68	2e	43	7a	61	72	2e	2d	2e	43	72	65	61	74	ith.CzarCreat
00a	a0	65	64	2e	46	72	6f	6d	2e	46	69	6c	74	68	2e	41	6e	ed.From. Filth.An

Figure 7: Content of HTTP GET TORRENT file

The client requests information from the web server "**104.26.14.170**" about the ".torrent" file, this request is sent once the user wants to download the "**.torrent file**".

2- Once the metadata file is running on the BitTorrent client, the client is starts connecting with the tracker. The packets captured in this step are shown in figure (8):

No.	Time	Source	Destination	Protocol	Length Info
+	567 16.749134	10.0.0.2	172.67.140.164	HTTP	250 GET /scrape?info_hash=%19dAq%cd%ba%89%f7~%
+	589 17.207289	172.67.140.164	10.0.0.2	HTTP	59 HTTP/1.1 200 OK (text/html)
	737 20.232945	10.0.0.2	104.21.3.146	HTTP	431 GET /announce?info_hash=%19dAq%cd%ba%89%f7
	791 20.613462	104.21.3.146	10.0.0.2	HTTP	59 HTTP/1.1 200 OK (text/plain)
	1458 26.170246	10.0.0.2	54.37.106.164	HTTP	431 GET /announce?info_hash=%19dAq%cd%ba%89%f7
	1514 26.422944	54.37.106.164	10.0.0.2	HTTP	408 HTTP/1.1 307 Temporary Redirect

Figure 8: Peer-Tracker main requests - HTTP GET

The client contacts a server, it called tracker. In this time, client contacts the tracker «172.67.140.164» by sends *http GET SCRAPE* «Get /scarpe? Info_hash» query that contains the file ID «info_hash» to get information about the file that want to download it. In addition to that, the client also sends *http GET ANOUNCE* «Get /announce? Info_hash» query with the same ID «info_hash» to all available trackers [9].

Once one of these trackers respond, let's take a tracker **«104.21.3.146**», it responds by message the request **«***http/1.1 200 OK*» with the text/plain. This response contains a list of peers that allows the client to establish connections with peers that shares the file. Only the HTTP protocol that supports the establishment of the connection between peers and tracker.

3- Once a client connection with peers, we notice the first message it sends by client is BitTorrent Handshake.

No

RECIMA21 - REVISTA CIENTÍFICA MULTIDISCIPLINAR ISSN 2675-6218

A NEW APPROACH TO DETECT P2P TRAFFIC BASED ON SIGNATURES ANALYSIS Ammar Mazri, Merouane Mehdi

																					Allinar Widzil,	werouane wenu
lo.		Time			Sour	ce						Desti	natio	n				F	Protocol	Length	Info	
	454	16.8	05899		10.	0.0	.2					182.	239	. 20	1.1	.04		E	BitTor.	122	Handshake	
	457	16.9	07530		10.	0.0	.2					110.	150	.72	.8			E	BitTor.	122	Handshake	
	792	37.4	90098		10.	0.0	.2					90.1	.63.	77.	146	5		E	BitTor.	122	Handshake	
	803	37.6	94511		10.	0.0	.2					89.1	78.	248	.72	2		E	BitTor.	122	Handshake	
	807	38.0	50404	- 0	90.	163	.77	.14	6			10.0	.0.	2				E	BitTor.	1454	Handshake	Extended
1			0000	0.2	22	46	4.2	>7	fs	08	od	b9	28	>2	22	08	00	45	00		· ·(····E·	
			0010		-		100		00						00					12		
			0020	100		-	17		46				777		65					-	- giLe ·· P·	
			0030	41	14	8a	37	00	00	13	42	69	74	54	6f	72	72	65	6e /		B itTorren	
			0040	74	20	70	72	6f	74	6f	63	6f	6c	00	00	00	00	00	10	proto	c ol	
			0050	00	05	19	64	41	71	cd	ba	89	f7	7e	93	9c	87	89	85 .	··dAq		
			0060	8a	ea	f5	99	1a	e0	2d	55	54	33	35	35	57	2d	8e	b3 ·		U T355W	
			0070	98	e8	70	fa	0b	85	a2	dd	26	ac							·p····	· &·	

Figure 9: BitTorrent HANDSHAKE

The HANDSHAKE query contains information indicate to the BitTorrent protocol and client (Peer ID). The answer of this query is **«HANDSAKE EXTENDED»**. Then, the client joins the download SWARM, and starts exchange with other peers concerning port and pieces available. Among the extensions of the Bittorrent protocol, BitTorrent uses a "*distributed hash table*" (DHT) for storing peer contact information for "*trackerless*" torrents. In effect, each peer becomes a tracker called node. Each node has a globally unique identifier known as the "*node ID*" Node IDs are chosen at random from the same 160-bit space as BitTorrent infohashes. BitTorrent clients include a DHT node, which is used to contact other nodes in the DHT to get the location of peers to download from using the BitTorrent protocol. The protocol is implemented over UDP. Figure 10 clearly illustrates this appearance. In the sniffer traces associated with protocol DHT that represented in "*get_peers1*" query [9]. Get_peers query has two arguments, represented by the chain «*d1:ad2:id20*»containing the node ID of the querying node and containing information of torrent by «*info_hash20* » [11].

117	7 7.4	7948	6	1	42.1	18.2	28.1	74	10	0.0.0	9.2			U	DP		379 27453 → 20421 Len=337
118	3 7.4	7956	2	1	54.8	1.20	8.18		10	0.0.0	9.2			U	DP		676 6881 → 20421 Len=634
L 119	7.5	3254	2	1	0.0.	0.2			19	98.10	90.14	15.52	2	U	DP		148 20421 → 8999 Len=106
120	7.5	3274	5	1	0.0.	0.2			18	35.21	1.216	5.191		U	DP		148 20421 → 64678 Len=106
121	1 7.5	3274	6	1	0.0.	0.2			91	1.210	0.250	.204	1	U	DP		148 20421 → 4444 Len=106
122	2 7.5	3333	2	1	0.0.	0.2			17	76.62	2.225	5.7		U	DP		148 20421 → 8999 Len=106
123	3 7.5	3356	2	1	0.0.	0.2			79	9.70.	.34.5	59		U	DP		148 20421 → 9089 Len=106
0000	Øa	a2	d6	4a	a7	f5	08	ed	b9	28	a2	aa	08	00	45	00	····J····· · (····E·
0010	00	86	0e	d5	00	00	80	11	c9	f7	0a	00	00	02	c6	64	d
0020	91	34	4f	c5	23	27	00	72	6a	60	64	31	Зa	61	64	32	·40·#'·r j` <mark>d1:ad2</mark>
0030	За	69	64	32	30	Зa	1a	50	15	a6	Зf	89	5e	f1	6d	0e	:id20:•P ••?•^•m•
0040	e3	6c	28	a1	1e	20	1d	cb	c2	bf	39	Зa	69	6e	66	6f	•1(•••••9:info
0050	5f	68	61	73	68	32	30	За	19	64	41	71	cd	ba	89	f7	_hash20: ·dAq····
0060	7e	93	9c	87	89	85	8a	ea	f5	99	1a	e0	65	31	Зa	71	~····e1:q
0070	39	За	67	65	74	5f	70	65	65	72	73	31	Зa	74	34	Зa	9 get_pe ers1:t4:
0080	45	47	00	00	31	Зa	76	34	Зa	55	54	b3	8e	31	Зa	79	EG••1:V4 :01••1:y
0090	31	Зa	71	65													1:qe

Figure 10: DHT -Get_Peers

4-Encrypted mode on application µTorrent (Forced)

The signatures of the BitTorrent protocol found until now are all in clear mode, once the encrypted mode enabled the traffic analysis becomes as Figure (11) shows us:

N

RECIMA21 - REVISTA CIENTÍFICA MULTIDISCIPLINAR ISSN 2675-6218

A NEW APPROACH TO DETECT P2P TRAFFIC BASED ON SIGNATURES ANALYSIS Ammar Mazri, Merouane Mehdi

No.		Time				Sou	urce						De	stina	tion				Prot	tocol	Length	Info
	7671	102.	4109	70		10	.0.	0.2					17	8.1	99.	123	.28		Bit	Tor	173	Continuation dat
	7736	102.	9160	67		10	.0.	0.2					17	8.1	99.	123	.28		Bit	Tor	249	Continuation dat
	7802	103.	3165	99		17	8.1	99.	123	.28			10	.0.	0.2				Bit	Tor	151	Continuation dat
	7811	103.	3321	.87		10	.0.	0.2					17	8.1	99.	123	.28		Bit	Tor	142	Continuation dat
	7825	103.	7350	70		10	.0.	0.2					17	8.1	99.	123	.28		Bit	Tor	172	Continuation dat
		0000	0.0		d6	4.0		f5	88	ed	ha	28			08	00	45 6	20			(····E	
		0010	_		1d		-		_	_							b2 9					
		0020			c9												50 1				P	
		0030	40	42	b6	0e	00	00	22	Ød	ed	5e	52	63	6f	de	e5 6	64	@B	*	^Rco···	1
		0040			5c												85 5				-t>	
		0050			61												9d c				••• 3Q•••	
		0060								52							82 8					
		0070			bЗ												35 0					
		0080			78												fa 7				к	
		0090			90						C8	6d	+3	tc	10	59	df (59	.x.3	· Pg	m···Y·i	1
		00a0	d9	9e	12	C5	8C	69	e6	11												

Figure 11: BitTorrent HANDSHAKE - Crypto

All Peer-to-Peer exchanges that are based on BitTorrent will be encrypted. Protocol encryption is a strengthening to privacy and confidentiality. In addition, traffic makes more difficult to determine by parties.

2.2 Signatures extracted from the analysis traffic

A. Signatures of protocol E-Donkey

Our digital of signatures Extraction Structure Based on three Fields in the Captured E-Donkey Packet:

1. Protocol: A protocol ID with a byte - 0xE3 for e-donkey, 0xc5 for emule, 0xE4 for Kademlia.

2. Size: The number of bytes between the protocol ID and the message type of this protocol.

3. Type : A unique byte - a unique message ID.

Through our analysis, the Table of Signatures of the E-Donkey protocol shown below is deducted (Table 1):

N	TYPE OF MSG	Length	Identifier	Protocol transport
0	eDonkey HELLO	XX XX XX XX	E3 01	ТСР
1	eDonkey Hello answer	XX XX XX XX	E3 4C	ТСР
2	emule extensions Second identification state	XX XX XX XX	C5 87	ТСР
3	emule extensions public key	XX XX XX XX	C5 85	ТСР
4	emule extensions Hello answer	XX XX XX XX	C5 4C	ТСР
5	emule extensions Signature	XX XX XX XX	C5 86	ТСР
6	eDonkey Get server info		E3 A2	UDP
7	eDonkey Server statut		E3 97	UDP
8	eDonkey Server Statut req		E3 96	UDP
9	KADEMLIA- KADEMLIA2_HELLO_REQ		E4 11	UDP
10	KADEMLIA- KADEMLIA2_HELLO_RES		E4 19	UDP
11	KADEMLIA-KADEMLIA2_REQ- FIND NODE		E4 21 0B	UDP
12	KADEMLIA-KADEMLIA2_REQ- FIND VALUE		E4 21 02	UDP

A NEW APPROACH TO DETECT P2P TRAFFIC BASED ON SIGNATURES ANALYSIS Ammar Mazri, Merouane Mehdi

13	KADEMLIA-KADEMLIA2_RES		E4 29	UDP
14	KADEMLIA-KADEMLIA2_REQ		E4 21	UDP
15	KADEMLIA- KADEMLIA_FINDBUDDY_REQ		E4 51	UDP
16	eDonkey Get Sources		E3 9a	UDP
17	eDonkey-Search File		E3 98	UDP
18	eDonkey-Search File Results		E3 99	UDP
19	eDonkey-Reask File Ping	Length	E3 90	UDP

 Table 1: E-donkey Protocol Digital signatures

B. Signatures of Protocol BitTorrent

We have extracted from using the Torrent application from the beginning of installation until the download, several frequent signatures. Bit Torrent's signature analysis results are summarized in the table 2:

Nom	Contents	Protocol transport		
GET TORRENT	GET /torrent	ТСР		
GET SCARPE	GET /scrape?info_hash	ТСР		
	User-Agent: uTorrent	TCP		
GET/ ANOUNCE	GET /announce? info_hash	ТСР		
3	User-Agent: uTorrent	ТСР		
HADSHAKE	BitTorrent protocol	ТСР		
HANDSHAKE	ut_metadata	ТСР		
EXTENDED	metadata_size	ТСР		
DHT Peer	d1:ad2:id20	UDP		
	info_hash20	UDP		
	get_peers1	UDP		
DHT Ping Tracker	/Announce	UDP		
	GET TORRENT GET SCARPE GET/ ANOUNCE HADSHAKE HANDSHAKE EXTENDED DHT Peer	GET TORRENTGET /torrentGET SCARPEGET /scrape?info_hashUser-Agent: uTorrentUser-Agent: uTorrentGET/ ANOUNCEGET /announce? info_hashUser-Agent: uTorrentUser-Agent: uTorrentHADSHAKEBitTorrent protocolHANDSHAKEut_metadataEXTENDEDmetadata_sizeDHT Peerd1:ad2:id20info_hash20get_peers1		

 Table 2: BitTorrent Protocol Digital signatures

2.3 Create rules of extracted signatures

The structure of creating the detection rules of these two protocols is based completely on the transport protocol (TCP and UDP) in the first place. As previously mentioned, each protocol is identified by a different method.

A. The rules that refer to App emule

We will give SID number to identify Snort rules signature of E-donkey (1000000 + order of signature in the table) e.g.:

- 1000000 >> indicate first signature from E-donkey

- 1000001 >> indicate second signature from E-donkey

- Rule N° 01: E-Donkey-Hello

Alert tcp any any -> any any (msg:" Possibility of using Emule: eDonkey-Hello "; content:" [E3]"; depth:1; content:" [01]"; depth:1; distance:4; sid:1000000; rev:1;)

A NEW APPROACH TO DETECT P2P TRAFFIC BASED ON SIGNATURES ANALYSIS Ammar Mazri, Merouane Mehdi

- Rule N° 02: E-Donkey-Hello answer

Alert tcp any any -> any any (msg Possibility of using emule: mule extensions-Second identification state "; content:"|C5|"; depth:1; content:"|87|"; depth:1; distance:4; sid:1000002: rev:1:)

- Rule N° 03: emule Extensions-Second identification state

Alert tcp any any -> any any (msg: "Possibility of using emule: eDonkey-Hello answer "; content:" |E3|"; depth:1; content:" |4C|"; depth:1; distance:4; sid:1000001; rev:1;)

- The same process for remaining alerts.

B. The rules that refer to App µTorrent:

- 2000001 >> indicate first signature from BitTorrent
- 2000002 >> indicate second signature from BitTorrent

- Rule N° 01: handshake

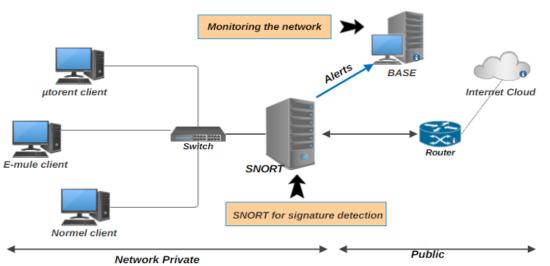
Alert tcp any any -> any any (msg: "Possibility of using uTorrent: handshake "; content:"BitTorrent protocol"; sid: 200001 ; rev:1;)

- Rule N° 02: handshake extension

Alert tcp any any -> any any (msg: "Possibility of using uTorrent: handshake extended "; content:" ut_metadata"; content:" metadata_size"; sid: 2000002; rev:1;)

- The same process for remaining alerts.

IMPLEMENTATION AND DISCUSSION


IMPLEMENTATION

After extracting the digital signatures of P2P protocols to detect the usage of P2P applications and protect the network, we employed the Snort system as our chosen intrusion detection system.

Snort operates based on the extracted signatures of protocols. To evaluate the effectiveness of our approach, we conducted tests on a simulated network that simulates a typical company network. The network setup is illustrated in the figure below.

A NEW APPROACH TO DETECT P2P TRAFFIC BASED ON SIGNATURES ANALYSIS Ammar Mazri, Merouane Mehdi

Figure 12: Work Architecture Laboratory – with P2P Apps

In our implementation, the extracted signatures are written into a file named "local.rules.txt" within the Snort system. Once the signatures are in place, we launch the Snort system to begin the intrusion detection process. Additionally, we utilize the graphical interface BASE "Basic Analysis and Security Engine" to facilitate the reading of alerts and real-time monitoring of the network status. Figure 13 illustrates the graphical interface used for this purpose.

Basic Analysis and Se	curity Engine (E	BASE)		
- Today's alerts:	unique	listing	Source IP	Destination IP
- Last 24 Hours alerts:	unique	listing	Source IP	Destination IP
- Last 72 Hours alerts:	unique	listing	Source IP	Destination IP
- Most recent 15 Alerts:	any protocol	ТСР	UDP	ICMP
- Last Source Ports:	any protocol	TCP	UDP	
- Last Destination Ports:	any protocol	ТСР	UDP	
- Most Frequent Source Ports:	any protocol	ТСР	UDP	
- Most Frequent Destination Ports:	any protocol	ТСР	UDP	
- Most frequent 15 Addresses:	Source	Destination		
- Most recent 15 Unique Alerts				
- Most frequent 5 Unique Alerts				
Sensors/Total: 1 / 1 Unique Alerts: 17		affic Profile by Protocol P (36%)		
Categories: 1		r ⁻ (30%)		
Total Number of Alerts: 100		DP (64%)		
 Src IP addrs: 12 		JP" (64%)		
Dest. IP addrs: 24		MD (01)		
Unique IP links 35		MP (0%)		
Source Ports: 22				
	Po	ortscan Traffic (0%)		
 TCP (13) UDP (9) Dest Ports: 27 				
• • TCP (7) UDP (20)		_		

Figure 13: Results generated by Snort on Basic Analysis and Security Engine

DISCUSSION

1. Once the client uses emule, Snort launches UDP / TCP alerts. These alerts are represented in the following figure:

A NEW APPROACH TO DETECT P2P TRAFFIC BASED ON SIGNATURES ANALYSIS Ammar Mazri, Merouane Mehdi

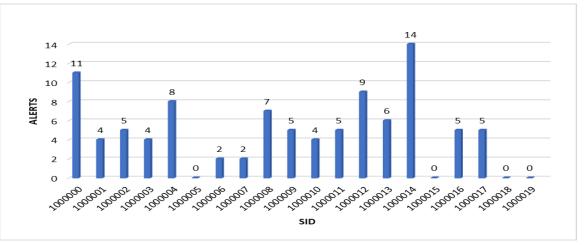
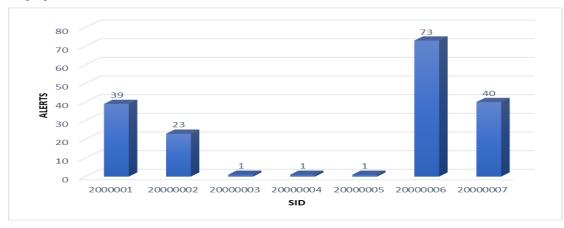



Figure 14: Graphic Columns of E-Donkey Detection Results

According to figure (14) of alerts, we note the presence of the Kademlia protocol. Numerous captured queries are KAD requests, the emule client is based primarily on KAD for searching and downloading files. The absence of four rules can be noted, which are based on identifiers of additional e-donkey operating messages.

2. Once the client µtorrent launched a download of torrent, all discovered alerts are displayed in the following figure 15:

Figure 15: Graphic columns of µTorrent detection results

It should also be noted that the number of alerts generated by the "DHT Peer" rule is very large, this is completely normal because this rule generates an alert on each request send to peers. The operation of the BitTorrent protocol is based completely on the "BitTorrent Handshake" request.

3. Results indicate the disclosure of the use of the µtorrent application in the coded mode by SNORT, as it releases 100 alerts that match five rules and the absence of only two.

A NEW APPROACH TO DETECT P2P TRAFFIC BASED ON SIGNATURES ANALYSIS Ammar Mazri, Merouane Mehdi

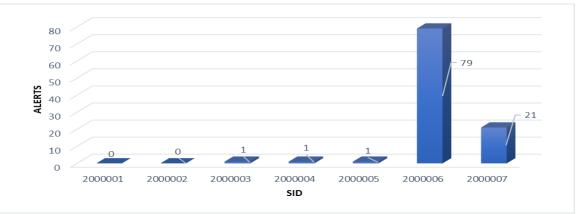


Figure 16: Graphic columns of detection results µTorrent encrypted

We can clearly note the absence of the alerts triggered by the two "Handshake" and "Handshake Extended" rules of the BitTorrent protocol, due to encryption.

We conclude from all these results, taken at a specific time interval, that the percentage of detection of P2P applications by this method was approximately 96%.

RELIABILITY TEST

To assess the reliability of our rules, we focused on the aspect of false positives, which refers to events that generate an alert indicating the use of P2P applications when there is actually no such usage. To ensure the accuracy of our rules, we conducted a test in which no P2P applications were used within the network.

During this test, we monitored the network traffic in real-time for a duration of 4 days. We ran the Snort system to detect any alerts related to P2P protocols. The results of this experiment were tracked and analyzed using the primary interface called "BASE." Figure 17 presents the recorded results of this experiment.

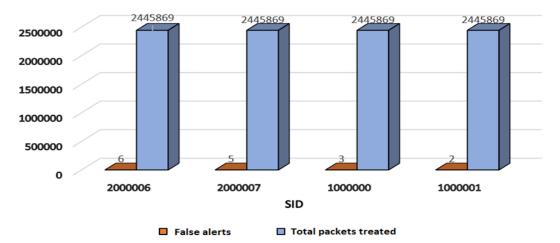


Figure 17: Graphic columns of the results of false alerts

The following figure displays the records for four days, 16 false alerts were taken from 2445869 packets treated for 4 days. The change in the wrong alert rate can be clear after each test,

A NEW APPROACH TO DETECT P2P TRAFFIC BASED ON SIGNATURES ANALYSIS Ammar Mazri, Merouane Mehdi

with an acceptable average of 0.000643 %, by this rate, its reliability can be confirmed. There is always a wrong positive rate on this type of alert, so it is necessary to check the context of alerts in order to determine whether one of them deals with a real alert because of the use of a P2P network.

CONCLUSION

In this study, our main focus was on presenting a novel approach to detect the usage of P2P applications within a network and mitigate the associated risks and drawbacks that pose a significant threat to both company and client privacy. To achieve this, we conducted a thorough analysis of the traffic generated by popular P2P file sharing applications such as μ Torrent and eMule, which rely on the BitTorrent and eDonkey protocols, respectively. Through this analysis, we extracted digital signatures indicative of these protocols.

Building upon this analysis, we developed a strategy that employed new rules within the "Snort" intrusion detection system to identify and detect P2P applications. By implementing this strategy over several time periods, we achieved a remarkable 96% detection rate for P2P application usage within the network. However, we observed that P2P applications continue to evolve rapidly, necessitating the regular updating of rules to ensure effective and reliable detection within the network.

REFERENCES

[1] Saxena P, Sharma SK. Analysis of network traffic by using packet sniffing tool: Wireshark. International Journal of Advance Research, Ideas and Innovations in Technology. 2017;3(6):804-808.

[2] Sen S, Wang J. Analyzing peer-to-peer traffic across large networks. IEEE/ACM Transactions on Networking. 2004;12(2):219–232. doi:10.1109/tnet.2004.826277

[3] Hwang IS, Rianto A, Pakpahan AF. Peer-to-peer file sharing architecture for software-defined TWDM-PON. Journal of Internet Technology. 2020;21(1):23-32.

[4] Shoab M, Jubayrin S. A. Intelligent neighbor selection for efficient query routing in unstructured P2P networks using Q-learning. Applied Intelligence. 2021;52(6):6306–6315. doi:10.1007/s10489-021-02793-6

[5] T2021_21 Risks of File Sharing (15th December 2021), Guyana National CIRT, URL: https://cirt.gy/Tips?page=5, 2021.

[6] BitTorrent, Inc. (n.d.). MTorrent (uTorrent): A very tiny BitTorrent client. Retrieved from https://www.utorrent.com/, 2023.

[7] Project.net - official emule homepage. downloads, help, docu, news... (n.d.). Retrieved from https://www.emule-project.com/home/perl/general.cgi?l=1&rm=download, 2024.

[8] Jaw E, Wang, X. A novel hybrid-based approach of Snort Automatic Rule Generator and security event correlation (SARG-SEC). PeerJ Computer Science. 2022;8. doi:10.7717/peerj-cs.900.

A NEW APPROACH TO DETECT P2P TRAFFIC BASED ON SIGNATURES ANALYSIS Ammar Mazri, Merouane Mehdi

[9] Mehdi M. Interception of P2P Traffic in a Campus Network. Romanian Journal of Information Technology & Automatic Control/Revista Română de Informatică și Automatică. 2019;29(2):21-34. doi:10.33436/v29i2y201902.

[10] Locher T, Schmid S, Wattenhofer R. edonkey & emule's kad: Measurements & attacks. Fundamenta Informaticae. 2011;109(4):383-403, doi:10.3233/fi-2011-518.

[11] Andrew Loewenstern, A. N. (n.d.). BitTorrent.org. Retrieved from https://www.bittorrent.org/beps/bep_0005.html. 2008.