ANÁLISE VISUAL DE DADOS POPULACIONAIS DO ESTADO DE MATO GROSSO USANDO LLM
DOI:
https://doi.org/10.47820/recima21.v6i7.6601Palavras-chave:
Análise populacional, Visualização de dados, ChatGPT, LLM, Análise gráfica, IAResumo
Este artigo mostra uma análise visual dos dados populacionais de Mato Grosso para os censos de 1980 até 2022, utilizando técnicas de diálogo via prompt e IA (Inteligência Artificial) para sugerir métodos de análise e geração de scripts de processamento dos dados de dataset populacional. A motivação central se deve a possibilidade de exploração de dados disponibilizados pelo IBGE (via censo), organizados em meso e microrregião, permitindo que scripts Python pudessem ler dados (datasets) em formato CSV e XLS e processar os mesmos. Entre os resultados, podemos indicar crescimento expressivo e declínio de determinados municípios. O uso de prompts para conversa com datasets (conjunto de dados) bem como com scripts se demonstrou útil para a interpretação de dados.
Downloads
Referências
ANESP. Censo 2022: alterações no perfil demográfico impactam políticas públicas. São Paulo: Anesp, 2023. Disponível em: www.anesp.org.br/todas-as-noticias/censo-2022-alteraes-no-perfil-demogrfico-impactam-polticas-pblicas.
BONDARENKO, O. V.; HANCHUK, O. V.; PAKHOMOVA, O. V.; TSUTSUNASHVILI, G.; ZAGÓRSKI, A. Visualization of demographic statistical data. IOP Conference Series: Earth and Environmental Science, v. 1049, n. 1, p. 012076, 2022. DOI: 10.1088/1755-1315/1049/1/012076. DOI: https://doi.org/10.1088/1755-1315/1049/1/012076
BORGES, G. M. A investigação da saúde nos censos demográficos do brasil: possibilidades de análise, vantagens e limitações. Boletim Informativo de Saúde (BIS), v. 16, n. 2, p. 6–14, 2015. Disponível em: https://docs.bvsalud.org/biblioref/2019/11/1025416/bis-v16n2-a-contribuicao-6-14.pdf DOI: https://doi.org/10.52753/bis.v16i2.35588
CARD, S.; MACKINLAY, J.; SHNEIDERMAN, B. Readings in Information Visualization: Using Vision To Think. San Francisco, CA: Morgan Kaufmann Publishers Inc, 1999. ISBN: 978-1-55860-533-6.
CUI, W. Visual analytics: A comprehensive overview. IEEE Access, v. 7, p. 81555–81573, 2019. DOI: 10.1109/ACCESS.2019.2923736. DOI: https://doi.org/10.1109/ACCESS.2019.2923736
DESAI, A. Deciphering human-ai interactions: A data-driven analysis of user prompting behaviors in large language models. ResearchGate Preprint, 2024. Disponível em: https://www.researchgate.net/publication/390587330_Deciphering_HumanAI_Interactions_A_Data-Driven_Analysis_of_User_Prompting_Behaviors_in_Large_Language_Models DOI: https://doi.org/10.36227/techrxiv.174235777.79846807/v1
DO PRADO, K. S. Repositório: Municípios brasileiros. [S. l.: s. n.], 2024. Disponível em: https://github.com/kelvins/municipios-brasileiros. Acesso em: abr. 2025.
FISHER, B. Illuminating the Path: An RD Agenda for Visual Analytics. 2005. [S. l.: s. n.], p. 69–104. ISBN: 0769523234.
IBGE. Censo demográfico. [S. l.]: IBGE, 2024a. Disponível em: https://www.ibge.gov.br/estatisticas/sociais/habitacao/25089censo19916.html?edicao=25090&t=o-que-e
IBGE. Linha do tempo – síntese da história do IBGE (1936-2016). [S. l.]: IBGE, 2017. Technical report. Disponível em: https://memoria.ibge.gov.br/images/memoria/linha-do-tempo/LinhaDoTempoSemImagem.pdf.
IBGE. Sidra: sistema IBGE de recuperação automática. [S. l.]: IBGE, 2024b. Disponível em: https://sidra.ibge.gov.br/home/pnadct/brasil.
JOSYULA, H.; PATEL, K.; BHANUSHALI, A.; SUNIL; LANDGE, R.; MITTAL, S. A review on data visualization for exploratory data analysis. Journal of Data Acquisition and Processing, v. 38, p. 487–494, 2023. DOI: 10.5281/zenodo.777730.
LIU, P.; YUAN, W.; FU, J.; JIANG, Z.; HAYASHI, H.; NEUBIG, G. Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing. ACM Comput. Surv., v. 55, n. 9, 2023. DOI: 10.1145/3560815. DOI: https://doi.org/10.1145/3560815
MANAGEMENT SOLUTIONS. The rise of Large Language Models: from fundamentals to application. [S. l.]: Management Solutions, 2024. Disponível em: https://www.managementsolutions.com/sites/default/files/minisite/static/72b0015f‑39c9‑4a52‑ba63872c115bfbd0/llm/pdf/rise‑of‑llm.pdf. Acesso em: 8 jul. 2025.
MESKÓ, B. Prompt engineering as an important emerging skill for medical professionals: Tutorial. J Med Internet Res, v. 25, e50638, 2023. DOI: 10.2196/50638. DOI: https://doi.org/10.2196/50638
MIDWAY, S. R. Principles of effective data visualization. Patterns, v. 1, n. 9, p. 100141, 2020. DOI: https://doi.org/10.1016/j.patter.2020.100141. DOI: https://doi.org/10.1016/j.patter.2020.100141
MONTGOMERY, R. M. Population dynamics: Conceptual foundations, mathematical models and applications. [S. l.: s. n.], 2025. DOI: 10.13140/RG.2.2.28694.66889.
NOY, N.; BENJELLOUN, O. Prompting datasets: Data discovery with conversational agents. arXiv preprint arXiv:2312.09947, 2023. DOI: https://arxiv.org/html/2312.09947v1.
OJIMA, R. Censo 2022: alterações no perfil demográfico impactam políticas públicas. Technical report, nov. 2017. Disponível em: https://anesp.org.br/todas-as-noticias/censo-2022-alteraes-no-perfil-demogrfico-impactam-polticas-pblicas.
OLIVEIRA, L. A. P.; SIMÕES, C. C. S. O IBGE e as pesquisas populacionais. Revista Brasileira de Estudos de População, v. 22, n. 2, p. 291–302, 2005. DOI: 10.1590/S0102-30982005000200007. DOI: https://doi.org/10.1590/S0102-30982005000200007
OPPENLAENDER, J.; LINDER, R. Prompting ai art: An investigation into the creative skill of prompt engineering. International Journal of Human–Computer Interaction, p. 1–23, 2024. DOI: 10.1080/10447318.2024.2431761. DOI: https://doi.org/10.1080/10447318.2024.2431761
OUYANG, W. Data visualization in big data analysis: Applications and future trends. J. Comput. Commun., v. 12, n. 11, p. 76–85, 2024. DOI: 10.4236/jcc.2024.1211005. DOI: https://doi.org/10.4236/jcc.2024.1211005
PETERSON, E. W. F. The role of population in economic growth. SAGE Open, v. 7, n. 4, p. 2158244017736094, 2017. DOI: 10.1177/2158244017736094. DOI: https://doi.org/10.1177/2158244017736094
QUINN, T. Population Dynamics. [S. l.: s. n.], 2013. DOI: 10.1002/9780470057339.vap028.pub2. DOI: https://doi.org/10.1002/9780470057339.vap028.pub2
REYNOLDS, L.; MCDONELL, K. Prompt programming for large language models: Beyond the few-shot paradigm. In: Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, CHI EA ’21, New York, NY, USA. Association for Computing Machinery, 2021. DOI: 10.1145/3411763.3451760. DOI: https://doi.org/10.1145/3411763.3451760
RIFFE, T.; KLUESENER, S.; SANDER, N. Editorial to the Special Issue on Demographic Data Visualization: Getting the point across – Reaching the potential of demographic data visualization. Demographic Research, S29, n. 36, p. 865–878, 2021a. DOI: 10.4054/DemRes.2021.44.36 DOI: https://doi.org/10.4054/DemRes.2021.44.36
RIFFE, T.; SANDER, N.; KLÜSENER, S. Getting the point across – reaching the potential of demographic data visualization. Demographic Research, v. 44, n. 36, p. 843–864, 2021b. Disponível em: https://www.demographic-research.org/volumes/vol44/36/44-36.pdf
SHIN, T.; RAZEGHI, Y.; LOGAN IV, R. L.; WALLACE, E.; SINGH, S. AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts. In: WEBBER, B.; COHN, T.; HE, Y.; LIU, Y. (editors). Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020. p. 4222–4235, Online. Association for Computational Linguistics. DOI: 10.18653/v1/2020.emnlp-main.346. DOI: https://doi.org/10.18653/v1/2020.emnlp-main.346
SIBLY, R.; HONE, J. Population growth rate and its determinants: An overview. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, v. 357, p. 1153–70, 2002. DOI: 10.1098/rstb.2002.1117. DOI: https://doi.org/10.1098/rstb.2002.1117
U.S. CENSUS BUREAU. Communicating with census data: Data visualization. Technical report. U.S: Department of Commerce, 2017. Disponível em: https://www.census.gov/content/dam/Census/library/working-papers/2017/demo/communicating-with-census-data-data-visualization.pdf
UNWIN, A. Why Is Data Visualization Important? What Is Important in Data Visualization? Harvard Data Science Review, v. 2, n. 1, 2020. https://hdsr.mitpress.mit.edu/pub/zok97i7p. DOI: https://doi.org/10.1162/99608f92.8ae4d525
WHITE, E. R. Minimum time required to detect population trends: The need for long-term monitoring programs. BioScience, v. 69, n. 1, p. 40–46, 2018. DOI: 10.1093/biosci/biy144. DOI: https://doi.org/10.1093/biosci/biy144
XU, A.; LIU, Z.; GUO, Y.; SINHA, V.; AKKIRAJU, R. A new chatbot for customer service on social media. In: Proceedings of the 2017 CHI Conference on Human Factors. ACM. CHI ’17, page 3506–3510, New York, NY, USA. Association for Computing Machinery, 2017. DOI: https://doi.org/10.1145/3025453.3025496
Downloads
Publicado
Licença
Copyright (c) 2025 RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECIMA21, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECIMA21 apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.