DESREGULAÇÃO DE microRNAs EM PROCESSOS PATOLÓGICOS DO CÂNCER

Autores

DOI:

https://doi.org/10.47820/recima21.v3i12.2492

Palavras-chave:

OncomiRs, miRs desregulados, miRNAs no plasma sanguíneo, Proteínas argonautas

Resumo

miRNAs são moléculas endógenas de 19 a 25 nucleotídeos, essas moléculas são transcritas pela RNA polimerase II, após a transcrição, os microRNAs são processados por uma RNAse III chamada DROSHA e uma proteína de ligação ao RNA dupla fita DGCR8; a DICER se associa com a proteína TRBP (proteína de ligação a RNA responsiva a ativação gênica) na clivagem do duplex de miRNA, com as proteínas do complexo de silenciamento induzido por RISC ocasionando regulação negativa pós-transcricional do mRNA alvo. Os miRNAs estão envolvidos em vários processos biológicos, como regulação da homeostase, diferenciação da linhagem hematopoiética, sendo relacionados também a processos patológicos como câncer e várias outras doenças. Esse estudo é uma revisão integrativa, as bases de dados consultadas foram o NCBI, BVS, SciELO e lista de referências dos artigos selecionados, foram baixados 156 artigos e apenas 36 foram incluídos na revisão, sendo artigos em português e inglês; utilizamos o fluxograma PRISMA 2020 para triagem dos artigos. Os achados demonstraram ampla gama de interações movidas por amplo espectro de proteínas, a regulação positiva e negativa dos miRNAs tem sido associada vários tipos de câncer, essas moléculas podem atuar como oncogenes ou genes supressores de tumor e tem se tornado um alvo atraente para estudos terapêuticos, o que poderia guiar mecanismos mais eficazes baseados na tomada de decisão clínica como prognóstico, diagnóstico e até como procedimento não invasivo.

Downloads

Não há dados estatísticos.

Biografia do Autor

Marcos Daniel Mendes Padilha

Universidade Federal do Pará - UFPA

Rosimar Neris Martins Feitosa

Universidade Federal do Pará - UFPA

 

Referências

Abadi AJ.; Zarrabi A.; Gholami MH.; Mirzaei S.; Hashemi F.; Zabolian A. et al. Small in Size, but Large in Action: microRNAs as Potential Modulators of PTEN in Breast and Lung Cancers. Biomolecules. 2021; 11(304):1-31.

Bai X.; Liu Z.; Shao X.; Wang D.; Dong E.; Wang Y. et al. The heterogeneity of plasma miRNA profiles im hepatocellular carcinoma in patients and the exploration of diagnostic circulating miRNAs for hepatocellular carcinoma. Plos One. 2019; 14(2):e0211581.

Bernstein DL.; Jiang X.; Rom S. let-7 microRNAs: Their Role in Cerebral and Cardiovascular Diseases, Inflammation, Cancer, and Their Regulation. Biomedicine. 2021; 9:1-18.

Condrat CE.; Thompson DC.; Barbu MG.; Bugnar OL.; Boboc A.; Cretoiu D. et al. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells. 2020; 9:1-32.

Conti I.; Simioni C.; Varano G.; Brenna C.; Costanzi E.; Neri LM. MicroRNAs Patterns as Potencial Tools for Diagnostic and Prognostic Follow-Up in Cancer Survivorship. Cells. 2021; 10:1-15.

Conti I.; Varano G.; Simioni C.; Laface I.; Milani D.; Rimondi E. et al. miRNAs as Influencers of Cell-Cell Communication in Tumor Microenvironment. Cells. 2020; 9(220):1-28.

Datta A.; Das P.; Dey S.; Ghuwalewala S.; Ghatak D.; Alam SK. et al. Genome-Wide Small RNA Sequencing Identifies MicroRNAs Deregulated in Non-Small Cell Lung Carcinoma Harboring Gain-of-Function Mutant p53. Genes. 2019; 10:1-23.

Fan X-D.; Luo Y.; Wang J.; An N. miR-154-3p and miR-487-3p synergistically modulate RHOA signaling in the carcinogenesis of thyroid cancer. Bioscience Reports. 2020; 40(1):1-13

Ferneza S.; Fetsych M.; Shuliak R.; Makukh H.; Volodko N.; Yarema R. et al. Clinical signicance of microRNAs-200 and Let-7 families expression assessment in patients with ovariam cancer. ecancer. 2021. 15:1-17.

Fiala O.; Sorejs O.; Hosek P.;Liska V.; Vycital O.; Bruha J. et al. Association of miR-125b, miR-17 and Let-7c Dysregulation With Response to Anti-epidermal Growth Factor Recptor Monoclonal Antibodies in Patients With Metastatic Colorectal Cancer. Cancer Genomics & Proteomics. 2020; 17:605-613.

Filho JCMR.; Kimura ET. MicroRNAS: Nova Classe de Reguladores Gênicos Envolvidos na Função Endócrina e Câncer. Arq Bras Endocrinol Metab. 2006; 50(6):1102-1107.

Fortunato O.; Borzi C.; Milione M.; Centonze G.; Conte D.; Boeri M. et al. Circulating mir-320a promotes immunosuppressive macrophages M2 phenotype associated with lung cancer risk. International Journal of Cancer. 2019; 144:2746-2761.

Fu Y.; Liu X.; Chen Q.; Liu T.; Lu C.; Yu J. et al. Downregulated miR-98-5p promotes PDAC proliferation and metastasis regulating MAP4K4. Journal of Experimental & Clinical Cancer Research. 2018; 37:1-14.

Furtado FM.; Scheucher PS.; Santan BA.; Zanette DL.; Calado RDT.; Rego EM. et al. Comparison of microRNA expression B-cell lymphocytosis and Binet A chronic lymphocytic leukemia. Brazilian Journal of Hematology and Hemotherapy. 2017; 39(3):237-243.

Galvão-Lima LJ.; Morais AHF.; Valentim RAM.; Barreto J. S. S. miRNAs as biomarkers for early cancer detection and their application in the development of new diagnostic tools. Biomedical Engineering Online. 2021; 20(21):1-20.

Gayosso-Gómez LV.; Ortiz-Quintero B. Circulating MicroRNAs in Blood and Other Body Fluids as Biomarkers for Diagnosis, Prognosis, and Therapy Response in Lung Cancer. Diagnostics. 2021; 11(3):1-26.

Hilly O.; Pillar N.; Stern S.; Strenov Y.; Bachar G.; Shomron N. et al. Distinctive pattern of Let-7 family microRNAs in aggressive carcinoma of the oral tongue in young patients. Oncology Letters. 2016; 12:1729-1736.

Lan H.; Lu H.; Wang X.; Jin H. MicroRNAs as Potential Biomarkers in Cancer: Opportunities and Challenges. BioMed Research International. 2015; 2015:125094.

Larrea E.; Sole C.; Manterola L.; Goicoechea I.; Armesto M.; Arestin M. et al. New Concepts in Cancer Biomarkers: Circulating miRNAs in Liquid Biopsies. International Journal of Molecular Sciences. 2016; 17(627):1-42.

Li X.; Zhang X.; Ma H.; Liu Y.; Cheng S.; Wang H. et al. Upregulation of serum exosomal miR-21 was associated with poor prognosis of acute myeloid leukemia patients. Food Science and Technology. 2022; 42:e51621.

Li Y.; Zhou J.; Wang J.; Chen X.; Zhu Y.; Chen Y. Mir- 30b-3p affects the migration and invasion function of ovarian cancer cells by targeting the CTHRC1 gene. Biological Research. 2020; 53(10):1-8.

Nayak B.; Khan N.; Garg H.; Rustagi Y.; Singh P.; Seth A. et al. Role of miR-182 and miR-187 as potential biomarkers in prostate cancer and its correlation with the staging of prostate cancer. International Brazilian Journal of Urology. 2020; 46(4):614-623.

Pajares MJ.; Alemany-Cosme E.; Goñi S.; Bandres E.; Palanca-Ballester.; Sandoval J. Epigenetic Regulation of microRNAs in Cancer: Shortening the Distance from Bench to Bedside. International Journal of Molecular Sciences. 2021; 22(14):1-23.

Peng B.; Li C.; He L.; Tian M.; Li X. miR-660-5p promotes breast cancer progression through down-regulating TET2 and activating PI3K/AKT/mTOR signaling. Brazilian Journal of Medical Research. 2020; 53(12):1-10.

Piedade D.; Azevedo-Pereira JM. The Role of microRNAs in the Pathogenesis of Herpesvirus Infection. Viruses. 2016; 8(6):1-32.

Preethi KA.; Selvakumar SC.; Ross K.; Jayaraman S.; Tusubira D.; Sekar D. Liquid biopsy: Exosomal microRNAs as novel diagnostic and prognostic biomarkers in cancer. Molecular Cancer. 2022; 21:1-15.

Schubert M.; Spahn M.; Kneitz S.; Scholz CJ.; Joniau S.; Stroebel P. et al. Distinct microRNA Expression Profile in Prostate Cancer Patients with Early Clinical Failure and the Impact of let-7 as Prognostic Marker in High-RiskProstate Cancer. Plos One. 2013; 8(6):e65064.

Sereno M.; Videira M.; Wilhelm I.; Krizbai IA.; Brito MA. miRNAs in Health and Disease: A Focus on the Breast Cancer Metastatic Cascade towards the brain. Cells. 2020; 9(1790):1-27.

Silva EDP.; Marti LC.; Andreghetto FM.; Sales ROD.; Hoberman M.; Dias BDS. et al. Extracellular vesicles cargo from head and neck cancer cell lines disrupt dendritic cells function and match plasma plasma microRNAs. Scientific Reports. 2021; 11(18534):16.

Smolarz B.; Durczyński A.; Romanowicz H.; Szyllo K.; Hogendorf P. miRNAs in Cancer (Review of Literature). International Journal of Molecular Sciences. 2022; 23(5):1-18.

Takashima Y.; Kawaguchi A.; Iwadate Y.; Hondoh H.; Fukai J.; Kajiwara K. et al. miR-101, miR-548b, miR-554, and miR-1202 are reliable prognosis predictors of the miRNAs associated with cancer immunity in primary central nervous system lymphoma. Plos One. 2020; 15(2):e0229577.

Xie HH.; Huan WT.; Han JQ.; Ren WR.; Yang LH. MicroRNA-663 facilitates the growth, migration and invasion of ovarian cancer cell by inhibiting TUSC2. Biological Research. 2019; 52(18):1-9.

Yang N.; Zhu S.; Lv X.; Qiao Y.; Liu Y-J.; Chen J. MicroRNAs: Pleiotropic Regulators in the Tumor Microenvironment. Frontiers in Immunology. 2018; 9:1-12.

Yi M.; Xu L.; Jiao Y.; Luo S.; Li A.; Wu K. The role of cancer-derived microRNAs in Cancer immune escape. Journal of Hematology & Oncology. 2020; 13(25):1-14.

Záveský L.; Jandáková E.; Weinberg V.; Minár L.; Hanzíková V.; Dusková D. et al. Ascites-Derived Extracellular microRNAs as Potential Biomarkers for Ovarian Cancer. Reproductive Science. 2019; 26(4):510-522.

Zheng Q.; Zhu Q.; Li C.; Hao S.; Li J.; Yu X. et al. microRNA-144 functions as a diagnostic and prognostic marker for retinoblastoma. Clinics. 2020; 75:e1814.

Downloads

Publicado

24/12/2022

Como Citar

Mendes Padilha, M. D., & Neris Martins Feitosa, R. (2022). DESREGULAÇÃO DE microRNAs EM PROCESSOS PATOLÓGICOS DO CÂNCER. RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 3(12), e3122492. https://doi.org/10.47820/recima21.v3i12.2492