ESPECTROSCOPIA NO INFRAVERMELHO PRÓXIMO (NIR) APLICADA NO MONITORAMENTO DA NUTRIÇÃO DE RUMINANTES
DOI:
https://doi.org/10.47820/recima21.v5i11.5873Palavras-chave:
espectroscopia no infravermelho próximo, monitoramento nutricional, espectroscopia fecal, sustentabilidadeResumo
Este artigo aborda a aplicação de tecnologias de espectroscopia no infravermelho próximo (NIR) e espectroscopia de reflectância no infravermelho fecal (fNIR) na avaliação nutricional de ruminantes. A análise dessas técnicas permite um monitoramento eficiente da dieta dos animais, facilitando a identificação de nutrientes essenciais e o controle da qualidade da alimentação. As metodologias apresentadas são não invasivas e oferecem resultados rápidos e precisos, representando uma ferramenta valiosa para a gestão de rebanhos em sistemas de produção sustentável. Os resultados indicam que o uso dessas tecnologias pode contribuir significativamente para a melhoria da produtividade e a sustentabilidade na pecuária. O objetivo deste artigo é explorar a aplicação das tecnologias de espectroscopia no infravermelho próximo (NIR) e espectroscopia de reflectância no infravermelho fecal (fNIR) como ferramentas eficazes para o monitoramento nutricional de ruminantes, visando melhorar a eficiência produtiva e a sustentabilidade nos sistemas de produção animal.
Downloads
Referências
AGREIL, C.; MEURET, M. An improved method for quantifying intake rate and ingestive behaviour of ruminants in diverse and variable habitats using direct observation. Small Ruminant Research, v. 54, n. 1, p. 99-113, 2004.
AOAC. Official methods of analysis. 14th ed. Arlington: Association of Official Analytical Chemists, 1984.
BEN‐GERA, I.; NORRIS, K. H. Direct spectrophotometric determination of fat and moisture in meat products. Journal of Food Science, v. 33, n. 1, p. 64-67, 1968.
BERTRAND, D. La spectroscopie proche infrarouge et ses applications dans les industries de l'alimentation animale. Productions animales, v. 15, n. 3, p. 209-219, 2002.
BOMFIM, M. A. D. NIRS as a tool to determine the nutritional value of native pasture for small ruminants. In: REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 50., 2013. Anais [...] 2013. p. 1-11.
BONNET, O. J.; MEURET, M.; TISCHLER, M. R.; CEZIMBRA, I. M.; AZAMBUJA, J. C.; CARVALHO, P. C. Continuous bite monitoring: a method to assess the foraging dynamics of herbivores in natural grazing conditions. Animal Production Science, v. 55, n. 3, p. 339-349, 2015.
BOVAL, M.; COATES, D. B.; LECOMTE, P.; DECRUYENAERE, V.; ARCHIMÈDE, H. Faecal near infrared reflectance spectroscopy (NIRS) to assess chemical composition, in vivo digestibility and intake of tropical grass by Creole cattle. Animal Feed Science and Technology, v. 114, n. 1, p. 19-29, 2004.
BRISKE, D. D.; DERNER, J. D.; BROWN, J. R.; FUHLENDORF, S. D.; TEAGUE, W. R.; HAVSTAD, K. M.; WILLMS, W. D. Rotational grazing on rangelands: reconciliation of perception and experimental evidence. Rangeland Ecology & Management, v. 61, n. 1, p. 3-17, 2008.
COATES, D. B. Faecal NIRS – technology for improving nutritional management of grazing cattle. Final Report of Project NAP3.121, Meat and Livestock, Australia, Sydney, 2004.
COATES, D. B.; DIXON, R. M. Faecal near infrared reflectance spectroscopy (F. NIRS) measurements of non-grass proportions in the diet of cattle grazing tropical rangelands. The Rangeland Journal, v. 29, n. 1, p. 51-63, 2007.
COLEMAN, S. W.; STUTH, J. W.; HOLLOWAY, J. W. Monitoring the nutrition of grazing cattle with near-infrared analysis of feces. XVI International Grassland Congress, v. 16, p. 881-882, 1989.
DE BARROS NETO, B.; SCARMINIO I. S.; BRUNS, R. E. 25 anos de quimiometria no Brasil. Química Nova, v. 29, n. 6, p. 1401, 2006.
DE BRABANDER, D. Feeding of dairy cows. 4. éd. French: Ministère de l’ Agriculture, Service Information, 1993. 71 p.
DECRUYENAERE, V.; FROIDMONT, E.; BARTIAUX-THILL, N.; BULDGEN, A.; STILMANT, D. Faecal near-infrared reflectance spectroscopy (NIRS) compared with other techniques for estimating the in vivo digestibility and dry matter intake of lactating grazing dairy cows. Animal Feed Science and Technology, v. 173, n. 3, p. 220-234, 2012.
DECRUYENAERE, V.; LECOMTE, P.; DEMARQUILLY, C.; AUFRERE, J.; DARDENNE, P.; STILMANT, D.; BULDGEN, A. Evaluation of green forage intake and digestibility in ruminants using near infrared reflectance spectroscopy (NIRS): Developing a global calibration. Animal Feed Science and Technology, v. 148, n. 2, p. 138-156, 2009.
DIXON, R. M.; COATES, D. B. The use of faecal NIRS to improve nutritional management of cattle in northern Australia. Recent Advances in Animal Nutrition in Australia, v. 15, p. 65-75, 2005.
DIXON, R.; COATES, D. Near infrared spectroscopy of faeces to evaluate the nutrition and physiology of herbivores. Journal of Near Infrared Spectroscopy, v. 17, n. 1, p. 11-31, 2009.
DOVER, J. S.; PHILLIPS, T. J.; ARNDT, K. A. Cutaneous effects and therapeutic uses of heat with emphasis on infrared radiation. Journal of the American Academy of Dermatology, v. 20, n. 2, p. 278-286, 1989.
DUDZINSKI, M. L.; ARNOLD, G. W. Comparisons of diets of sheep and cattle grazing together on sown pastures on the southern tablelands of New South Wales by principal components analysis. Crop and Pasture Science, v. 24, n. 6, p. 899-912, 1973.
FANCHONE, A.; BOVAL, M.; LECOMTE, P.; ARCHIMÈDE, H. Faecal indices based on near infrared spectroscopy to assess intake, in vivo digestibility and chemical composition of the herbage ingested by sheep. Journal of Near Infrared Spectroscopy, v. 15, n. 2, p. 107, 2007.
FERRÃO, M. F.; DAVANZO, C. U. Horizontal attenuated total reflection applied to simultaneous determination of ash and protein contents in commercial wheat flour. Analytica Chimica Acta, v. 540, n. 2, p. 411-415, 2005.
FERREIRA, M. M. C. Quimiometria: conceitos, métodos e aplicações. Campinas: Editora Unicamp, 2015.
FOLEY, W. J.; MCILWEE, A.; LAWLER, I.; ARAGONES, L.; WOOLNOUGH, A. P.; BERDING, N. Ecological applications of near infrared reflectance spectroscopy – a tool for rapid, cost-effective prediction of the composition of plant and animal tissues and aspects of animal performance. Oecologia, v. 116, n. 3, p. 293-305, 1998.
GLASSER, T.; LANDAU, S.; UNGAR, E. D.; PEREVOLOTSKY, A.; DVASH, L.; MUKLADA, H.; WALKER, J. W. A fecal near-infrared reflectance spectroscopy-aided methodology to determine goat dietary composition in a Mediterranean shrubland. Journal of Animal Science, v. 86, n. 6, p. 1345-1356, 2008.
GONG, H. Y.; BAI, Y.; SONG, R. L.; CHEN, Z. H. The discrimination of Tiegun Yam and Baiyu Yam using near infrared spectroscopy. China Journal of Hospital Pharmacy, v. 30, p. 735-737, 2010.
HATTERSLEY, P. W. The distribution of C3 and C4 grasses in Australia in relation to climate. Oecologia, v. 57, n. 1-2, p. 113-128, 1983.
HRUSCHKA, W. R. Data analysis: wavelength selection methods. Near-infrared technology in the agricultural and food industries, v. 2, 1987.
JOBSIS, F. F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, v. 198, n. 4323, p. 1264-1267, 1977.
KNEEBONE, D. G.; DRYDEN, G. McL. Prediction of diet quality for sheep from faecal characteristics: comparison of near-infrared spectroscopy and conventional chemistry predictive models. Animal Production Science, v. 55, n. 1, p. 1-10, 2015.
LANDAU, S. Y.; DVASH, L.; ROUDMAN, M.; MUKLADA, H.; BARKAI, D.; YEHUDA, Y.; UNGAR, E. D.; GLASSER, T. Faecal NIRS calibration and equation transfer: application to dietary composition of goats browsing in Mediterranean woodland. Journal of Animal Physiology and Animal Nutrition, v. 99, n. 2, p. 290-304, 2015.
LANDAU, S.; DVASH, L.; DECANDIA, M.; CABIDDU, A.; SHAPIRO, F.; MOLLE, G.; SILANIKOVE, N. Determination of poly (ethylene glycol)-binding to browse foliage, as an assay of tannin, by near-infrared reflectance spectroscopy. Journal of Agricultural and Food Chemistry, v. 52, n. 3, p. 638-642, 2004b.
LANDAU, S.; GIGER-REVERDIN, S.; RAPETTI, L.; DVASH, L.; DORLÉANS, M.; UNGAR, E. D. Data mining old digestibility trials for nutritional monitoring in confined goats with aids of fecal near infra-red spectrometry. Small Ruminant Research, v. 77, n. 2, p. 146-158, 2008.
LANDAU, S.; GLASSER, T.; DVASH, L. Monitoring nutrition in small ruminants with the aid of near infrared reflectance spectroscopy (NIRS) technology: A review. Small Ruminant Research, v. 61, n. 1, p. 1-11, 2006.
LANDAU, S.; GLASSER, T.; DVASH, L.; PEREVOLOTSKY, A. Faecal NIRS to monitor the diet of Mediterranean goats. South African Journal of Animal Science, v. 34, n. 5, p. 76-80, 2004a.
LANDAU, S.; GLASSER, T.; MUKLADA, H.; DVASH, L.; PEREVOLOTSKY, A.; UNGAR, E. D.; WALKER, J. W. Fecal NIRS prediction of dietary protein percentage and in vitro dry matter digestibility in diets ingested by goats in Mediterranean scrubland. Small Ruminant Research, v. 59, n. 2, p. 251-263, 2005.
LEARDI, R.; NORGAARD, L. Sequential application of backward interval PLS and genetic algorithms for the selection of relevant spectral regions. Journal of Chemometrics, v. 18, p. 486–497.
LEITE, E. R.; STUTH, J. W. Fecal NIRS equations to assess diet quality of free-ranging goats. Small Ruminant Research, v. 15, n. 3, p. 223-230, 1995.
LI, H.; TOLLESON, D.; STUTH, J.; BAI, K.; MO, F.; KRONBERG, S. Faecal near infrared reflectance spectroscopy to predict diet quality for sheep. Small Ruminant Research, v. 68, n. 3, p. 263-268, 2007.
LIMA, A.; BAKKER, J. Espectroscopia no infravermelho próximo para monitoração da perfusão tecidual. Revista Brasileira Terapia Intensiva, v. 23, n. 3, p. 341-351, 2011.
LYONS, R. K.; STUTH, J. W. Fecal NIRS equations for predicting diet quality of free-ranging cattle. Journal of Range Management, p. 238-244, 1992.
MARTENS, H.; NAES, T. Multivariate calibration. [S. l.]: John Wiley & Sons, 1989.
MEURET, M.; DARDENNE, P.; BISTON, R.; POTY, O. The use of NIR in predicting nutritive value of Mediterranean tree and shrub foliage. Journal of Near Infrared Spectroscopy, v. 1, n. 1, p. 45-54, 1993.
MEURET, M.; PROVENZA, F. D. When art and science meet: integrating knowledge of French herders with science of foraging behavior. Rangeland Ecology & Management, v. 68, n. 1, p. 1-17, 2015.
NÚÑEZ-SÁNCHEZ, N.; CARRION, D.; BLANCO, F. P.; GARCÍA, V. D.; SIGLER, A. G.; MARTÍNEZ-MARÍN, A. L. Evaluation of botanical and chemical composition of sheep diet by using faecal near infrared spectroscopy. Animal Feed Science and Technology, v. 222, p. 1-6, 2016.
OTTAVIAN, M.; FRANCESCHIN, E.; SIGNORIN, E.; SEGATO, S.; BERZAGHI, P.; CONTIERO, B.; COZZI, G. Application of near infrared reflectance spectroscopy (NIRS) on faecal samples from lactating dairy cows to assess two levels of concentrate supplementation during summer grazing in alpine pastures. Animal Feed Science and Technology, v. 202, p. 100-105, 2015.
PERIPOLLI, V.; PRATES, Ê. R.; BARCELLOS, J. O. J.; NETO, J. B. Fecal nitrogen to estimate intake and digestibility in grazing ruminants. Animal Feed Science and Technology, v. 163, n. 2, p. 170-176, 2011.
REICH, G. Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications. Advanced Drug Delivery Reviews, v. 57, n. 8, p. 1109-1143, 2005.
RIBEIRO, F. A. L.; BARBOSA, F. D.; BREITKREITZ, M. C.; MARTINS, J. A. Quimiometria: inovação no desenvolvimento e validação de métodos analíticos para controle de qualidade na indústria química. Informativo CRQ 4ª Região, n. 85, p. 14-15, 2007.
SHENK, S.; WESTERHAUS, M. O. Near infrared reflectance analysis with single and multiproduct calibrations. Crop Science, v. 33, n. 3, p. 582-584, 1993.
SIESLER, H. W.; OZAKI, Y.; KAWATA, S.; HEISE, H. M. Near-infrared spectroscopy: principles, instruments, applications. [S. l.]: John Wiley & Sons, 2008. cap. 10, p. 1-15.
SILUÉ, N.; BASTIANELLI, D.; MEURET, M.; HASSOUN, P.; JOUVEN, M. Functional classification by NIRS of plant parts selected by sheep on a shrubby rangeland. Options Méditerranéennes, n. 114, p. 71, 2016.
TILLEY, J. M. A.; TERRY, R. A. A two‐stage technique for the in vitro digestion of forage crops. Grass and Forage Science, v. 18, n. 2, p. 104-111, 1963.
VAN SOEST, P. J. Nutritional ecology of the ruminant. 2. ed. Ithaca: Cornell University Press, 1994. 476 p.
WALKER, J. W.; MCCOY, S. D.; LAUNCHBAUGH, K. L.; FRAKER, M. J.; POWELL, J. Calibrating fecal NIRS equations for predicting botanical composition of diets. Journal of Range Management, p. 374-382, 2002.
WILSON, A. D. Comparison of sheep and cattle grazing on a semiarid grassland. Crop and Pasture Science, v. 27, n. 1, p. 155-162, 1976.
ZAMORA, P. P.; PONCE, L. C.; NAGATA, N.; POPPI, R. J. Alternativas quimiométricas para a resolução de problemas analíticos clássicos. Determinação espectrofotométrica de misturas de zircônio e háfnio. Química Nova, v. 20, n. 5, p. 469-474, 1997.
ZHANG, L. G.; ZHANG, X.; NI, L. J.; XUE, Z. B.; GU, X.; HUANG, S. X. Rapid identification of adulterated cow milk by non-linear pattern recognition methods based on near infrared spectroscopy. Food Chemistry, v. 145, p. 342-348, 2014.
Downloads
Publicado
Como Citar
Licença
Copyright (c) 2024 RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECIMA21, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECIMA21 apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.