ESPECTROSCOPIA NO INFRAVERMELHO PRÓXIMO (NIR) APLICADA NO MONITORAMENTO DA NUTRIÇÃO DE RUMINANTES

Autores

DOI:

https://doi.org/10.47820/recima21.v5i11.5873

Palavras-chave:

espectroscopia no infravermelho próximo, monitoramento nutricional, espectroscopia fecal, sustentabilidade

Resumo

Este artigo aborda a aplicação de tecnologias de espectroscopia no infravermelho próximo (NIR) e espectroscopia de reflectância no infravermelho fecal (fNIR) na avaliação nutricional de ruminantes. A análise dessas técnicas permite um monitoramento eficiente da dieta dos animais, facilitando a identificação de nutrientes essenciais e o controle da qualidade da alimentação. As metodologias apresentadas são não invasivas e oferecem resultados rápidos e precisos, representando uma ferramenta valiosa para a gestão de rebanhos em sistemas de produção sustentável. Os resultados indicam que o uso dessas tecnologias pode contribuir significativamente para a melhoria da produtividade e a sustentabilidade na pecuária. O objetivo deste artigo é explorar a aplicação das tecnologias de espectroscopia no infravermelho próximo (NIR) e espectroscopia de reflectância no infravermelho fecal (fNIR) como ferramentas eficazes para o monitoramento nutricional de ruminantes, visando melhorar a eficiência produtiva e a sustentabilidade nos sistemas de produção animal.

Downloads

Não há dados estatísticos.

Biografia do Autor

José André Júnior

Universidade Federal Rural do semiárido (UFERSA).

Luciana Freitas Guedes

Faculdades UNINTA FORTALEZA.

Luiz Felipe Martins Neves

Universidade Federal de Minas Gerais (UFMG).

Iran Borges

Universidade Federal de Minas Gerais (UFMG).

Carla Fonseca Alves Campos

Universidade Estadual do Maranhão  - UEMA.

Caroliny Costa Araújo

Zootecnista pela Universidade Federal do Tocantins. Mestre em Ciência Animal Tropical pela Universidade Federal do Tocantins, Doutora em Zootecnia pelo Programa de Pós Graduação em Ciência Animal Tropical da Universidade Federal do Norte do Tocantins.

Mário Augusto Vitória

Faculdade UNOPAR.

Flávia Luzia Rodrigues Fonseca

Universidade Federal do Norte de Tocantins - UFNT.

Referências

AGREIL, C.; MEURET, M. An improved method for quantifying intake rate and ingestive behaviour of ruminants in diverse and variable habitats using direct observation. Small Ruminant Research, v. 54, n. 1, p. 99-113, 2004. DOI: https://doi.org/10.1016/j.smallrumres.2003.10.013

AOAC. Official methods of analysis. 14th ed. Arlington: Association of Official Analytical Chemists, 1984.

BEN‐GERA, I.; NORRIS, K. H. Direct spectrophotometric determination of fat and moisture in meat products. Journal of Food Science, v. 33, n. 1, p. 64-67, 1968. DOI: https://doi.org/10.1111/j.1365-2621.1968.tb00885.x

BERTRAND, D. La spectroscopie proche infrarouge et ses applications dans les industries de l'alimentation animale. Productions animales, v. 15, n. 3, p. 209-219, 2002. DOI: https://doi.org/10.20870/productions-animales.2002.15.3.3702

BOMFIM, M. A. D. NIRS as a tool to determine the nutritional value of native pasture for small ruminants. In: REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 50., 2013. Anais [...] 2013. p. 1-11.

BONNET, O. J.; MEURET, M.; TISCHLER, M. R.; CEZIMBRA, I. M.; AZAMBUJA, J. C.; CARVALHO, P. C. Continuous bite monitoring: a method to assess the foraging dynamics of herbivores in natural grazing conditions. Animal Production Science, v. 55, n. 3, p. 339-349, 2015. DOI: https://doi.org/10.1071/AN14540

BOVAL, M.; COATES, D. B.; LECOMTE, P.; DECRUYENAERE, V.; ARCHIMÈDE, H. Faecal near infrared reflectance spectroscopy (NIRS) to assess chemical composition, in vivo digestibility and intake of tropical grass by Creole cattle. Animal Feed Science and Technology, v. 114, n. 1, p. 19-29, 2004. DOI: https://doi.org/10.1016/j.anifeedsci.2003.12.009

BRISKE, D. D.; DERNER, J. D.; BROWN, J. R.; FUHLENDORF, S. D.; TEAGUE, W. R.; HAVSTAD, K. M.; WILLMS, W. D. Rotational grazing on rangelands: reconciliation of perception and experimental evidence. Rangeland Ecology & Management, v. 61, n. 1, p. 3-17, 2008. DOI: https://doi.org/10.2111/06-159R.1

COATES, D. B. Faecal NIRS – technology for improving nutritional management of grazing cattle. Final Report of Project NAP3.121, Meat and Livestock, Australia, Sydney, 2004.

COATES, D. B.; DIXON, R. M. Faecal near infrared reflectance spectroscopy (F. NIRS) measurements of non-grass proportions in the diet of cattle grazing tropical rangelands. The Rangeland Journal, v. 29, n. 1, p. 51-63, 2007. DOI: https://doi.org/10.1071/RJ07011

COLEMAN, S. W.; STUTH, J. W.; HOLLOWAY, J. W. Monitoring the nutrition of grazing cattle with near-infrared analysis of feces. XVI International Grassland Congress, v. 16, p. 881-882, 1989.

DE BARROS NETO, B.; SCARMINIO I. S.; BRUNS, R. E. 25 anos de quimiometria no Brasil. Química Nova, v. 29, n. 6, p. 1401, 2006. DOI: https://doi.org/10.1590/S0100-40422006000600042

DE BRABANDER, D. Feeding of dairy cows. 4. éd. French: Ministère de l’ Agriculture, Service Information, 1993. 71 p.

DECRUYENAERE, V.; FROIDMONT, E.; BARTIAUX-THILL, N.; BULDGEN, A.; STILMANT, D. Faecal near-infrared reflectance spectroscopy (NIRS) compared with other techniques for estimating the in vivo digestibility and dry matter intake of lactating grazing dairy cows. Animal Feed Science and Technology, v. 173, n. 3, p. 220-234, 2012. DOI: https://doi.org/10.1016/j.anifeedsci.2012.02.005

DECRUYENAERE, V.; LECOMTE, P.; DEMARQUILLY, C.; AUFRERE, J.; DARDENNE, P.; STILMANT, D.; BULDGEN, A. Evaluation of green forage intake and digestibility in ruminants using near infrared reflectance spectroscopy (NIRS): Developing a global calibration. Animal Feed Science and Technology, v. 148, n. 2, p. 138-156, 2009. DOI: https://doi.org/10.1016/j.anifeedsci.2008.03.007

DIXON, R. M.; COATES, D. B. The use of faecal NIRS to improve nutritional management of cattle in northern Australia. Recent Advances in Animal Nutrition in Australia, v. 15, p. 65-75, 2005.

DIXON, R.; COATES, D. Near infrared spectroscopy of faeces to evaluate the nutrition and physiology of herbivores. Journal of Near Infrared Spectroscopy, v. 17, n. 1, p. 11-31, 2009. DOI: https://doi.org/10.1255/jnirs.822

DOVER, J. S.; PHILLIPS, T. J.; ARNDT, K. A. Cutaneous effects and therapeutic uses of heat with emphasis on infrared radiation. Journal of the American Academy of Dermatology, v. 20, n. 2, p. 278-286, 1989. DOI: https://doi.org/10.1016/S0190-9622(89)70034-7

DUDZINSKI, M. L.; ARNOLD, G. W. Comparisons of diets of sheep and cattle grazing together on sown pastures on the southern tablelands of New South Wales by principal components analysis. Crop and Pasture Science, v. 24, n. 6, p. 899-912, 1973. DOI: https://doi.org/10.1071/AR9730899

FANCHONE, A.; BOVAL, M.; LECOMTE, P.; ARCHIMÈDE, H. Faecal indices based on near infrared spectroscopy to assess intake, in vivo digestibility and chemical composition of the herbage ingested by sheep. Journal of Near Infrared Spectroscopy, v. 15, n. 2, p. 107, 2007. DOI: https://doi.org/10.1255/jnirs.720

FERRÃO, M. F.; DAVANZO, C. U. Horizontal attenuated total reflection applied to simultaneous determination of ash and protein contents in commercial wheat flour. Analytica Chimica Acta, v. 540, n. 2, p. 411-415, 2005. DOI: https://doi.org/10.1016/j.aca.2005.03.038

FERREIRA, M. M. C. Quimiometria: conceitos, métodos e aplicações. Campinas: Editora Unicamp, 2015. DOI: https://doi.org/10.7476/9788526814714

FOLEY, W. J.; MCILWEE, A.; LAWLER, I.; ARAGONES, L.; WOOLNOUGH, A. P.; BERDING, N. Ecological applications of near infrared reflectance spectroscopy – a tool for rapid, cost-effective prediction of the composition of plant and animal tissues and aspects of animal performance. Oecologia, v. 116, n. 3, p. 293-305, 1998. DOI: https://doi.org/10.1007/s004420050591

GLASSER, T.; LANDAU, S.; UNGAR, E. D.; PEREVOLOTSKY, A.; DVASH, L.; MUKLADA, H.; WALKER, J. W. A fecal near-infrared reflectance spectroscopy-aided methodology to determine goat dietary composition in a Mediterranean shrubland. Journal of Animal Science, v. 86, n. 6, p. 1345-1356, 2008. DOI: https://doi.org/10.2527/jas.2006-817

GONG, H. Y.; BAI, Y.; SONG, R. L.; CHEN, Z. H. The discrimination of Tiegun Yam and Baiyu Yam using near infrared spectroscopy. China Journal of Hospital Pharmacy, v. 30, p. 735-737, 2010.

HATTERSLEY, P. W. The distribution of C3 and C4 grasses in Australia in relation to climate. Oecologia, v. 57, n. 1-2, p. 113-128, 1983. DOI: https://doi.org/10.1007/BF00379569

HRUSCHKA, W. R. Data analysis: wavelength selection methods. Near-infrared technology in the agricultural and food industries, v. 2, 1987.

JOBSIS, F. F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, v. 198, n. 4323, p. 1264-1267, 1977. DOI: https://doi.org/10.1126/science.929199

KNEEBONE, D. G.; DRYDEN, G. McL. Prediction of diet quality for sheep from faecal characteristics: comparison of near-infrared spectroscopy and conventional chemistry predictive models. Animal Production Science, v. 55, n. 1, p. 1-10, 2015. DOI: https://doi.org/10.1071/AN13252

LANDAU, S. Y.; DVASH, L.; ROUDMAN, M.; MUKLADA, H.; BARKAI, D.; YEHUDA, Y.; UNGAR, E. D.; GLASSER, T. Faecal NIRS calibration and equation transfer: application to dietary composition of goats browsing in Mediterranean woodland. Journal of Animal Physiology and Animal Nutrition, v. 99, n. 2, p. 290-304, 2015.

LANDAU, S.; DVASH, L.; DECANDIA, M.; CABIDDU, A.; SHAPIRO, F.; MOLLE, G.; SILANIKOVE, N. Determination of poly (ethylene glycol)-binding to browse foliage, as an assay of tannin, by near-infrared reflectance spectroscopy. Journal of Agricultural and Food Chemistry, v. 52, n. 3, p. 638-642, 2004b. DOI: https://doi.org/10.1021/jf0305581

LANDAU, S.; GIGER-REVERDIN, S.; RAPETTI, L.; DVASH, L.; DORLÉANS, M.; UNGAR, E. D. Data mining old digestibility trials for nutritional monitoring in confined goats with aids of fecal near infra-red spectrometry. Small Ruminant Research, v. 77, n. 2, p. 146-158, 2008. DOI: https://doi.org/10.1016/j.smallrumres.2008.03.010

LANDAU, S.; GLASSER, T.; DVASH, L. Monitoring nutrition in small ruminants with the aid of near infrared reflectance spectroscopy (NIRS) technology: A review. Small Ruminant Research, v. 61, n. 1, p. 1-11, 2006. DOI: https://doi.org/10.1016/j.smallrumres.2004.12.012

LANDAU, S.; GLASSER, T.; DVASH, L.; PEREVOLOTSKY, A. Faecal NIRS to monitor the diet of Mediterranean goats. South African Journal of Animal Science, v. 34, n. 5, p. 76-80, 2004a.

LANDAU, S.; GLASSER, T.; MUKLADA, H.; DVASH, L.; PEREVOLOTSKY, A.; UNGAR, E. D.; WALKER, J. W. Fecal NIRS prediction of dietary protein percentage and in vitro dry matter digestibility in diets ingested by goats in Mediterranean scrubland. Small Ruminant Research, v. 59, n. 2, p. 251-263, 2005. DOI: https://doi.org/10.1016/j.smallrumres.2005.05.009

LEARDI, R.; NORGAARD, L. Sequential application of backward interval PLS and genetic algorithms for the selection of relevant spectral regions. Journal of Chemometrics, v. 18, p. 486–497. DOI: https://doi.org/10.1002/cem.893

LEITE, E. R.; STUTH, J. W. Fecal NIRS equations to assess diet quality of free-ranging goats. Small Ruminant Research, v. 15, n. 3, p. 223-230, 1995. DOI: https://doi.org/10.1016/0921-4488(94)00026-4

LI, H.; TOLLESON, D.; STUTH, J.; BAI, K.; MO, F.; KRONBERG, S. Faecal near infrared reflectance spectroscopy to predict diet quality for sheep. Small Ruminant Research, v. 68, n. 3, p. 263-268, 2007. DOI: https://doi.org/10.1016/j.smallrumres.2005.10.017

LIMA, A.; BAKKER, J. Espectroscopia no infravermelho próximo para monitoração da perfusão tecidual. Revista Brasileira Terapia Intensiva, v. 23, n. 3, p. 341-351, 2011. DOI: https://doi.org/10.1590/S0103-507X2011000300013

LYONS, R. K.; STUTH, J. W. Fecal NIRS equations for predicting diet quality of free-ranging cattle. Journal of Range Management, p. 238-244, 1992. DOI: https://doi.org/10.2307/4002970

MARTENS, H.; NAES, T. Multivariate calibration. [S. l.]: John Wiley & Sons, 1989.

MEURET, M.; DARDENNE, P.; BISTON, R.; POTY, O. The use of NIR in predicting nutritive value of Mediterranean tree and shrub foliage. Journal of Near Infrared Spectroscopy, v. 1, n. 1, p. 45-54, 1993. DOI: https://doi.org/10.1255/jnirs.5

MEURET, M.; PROVENZA, F. D. When art and science meet: integrating knowledge of French herders with science of foraging behavior. Rangeland Ecology & Management, v. 68, n. 1, p. 1-17, 2015. DOI: https://doi.org/10.1016/j.rama.2014.12.007

NÚÑEZ-SÁNCHEZ, N.; CARRION, D.; BLANCO, F. P.; GARCÍA, V. D.; SIGLER, A. G.; MARTÍNEZ-MARÍN, A. L. Evaluation of botanical and chemical composition of sheep diet by using faecal near infrared spectroscopy. Animal Feed Science and Technology, v. 222, p. 1-6, 2016. DOI: https://doi.org/10.1016/j.anifeedsci.2016.09.010

OTTAVIAN, M.; FRANCESCHIN, E.; SIGNORIN, E.; SEGATO, S.; BERZAGHI, P.; CONTIERO, B.; COZZI, G. Application of near infrared reflectance spectroscopy (NIRS) on faecal samples from lactating dairy cows to assess two levels of concentrate supplementation during summer grazing in alpine pastures. Animal Feed Science and Technology, v. 202, p. 100-105, 2015. DOI: https://doi.org/10.1016/j.anifeedsci.2015.01.013

PERIPOLLI, V.; PRATES, Ê. R.; BARCELLOS, J. O. J.; NETO, J. B. Fecal nitrogen to estimate intake and digestibility in grazing ruminants. Animal Feed Science and Technology, v. 163, n. 2, p. 170-176, 2011. DOI: https://doi.org/10.1016/j.anifeedsci.2010.11.008

REICH, G. Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications. Advanced Drug Delivery Reviews, v. 57, n. 8, p. 1109-1143, 2005. DOI: https://doi.org/10.1016/j.addr.2005.01.020

RIBEIRO, F. A. L.; BARBOSA, F. D.; BREITKREITZ, M. C.; MARTINS, J. A. Quimiometria: inovação no desenvolvimento e validação de métodos analíticos para controle de qualidade na indústria química. Informativo CRQ 4ª Região, n. 85, p. 14-15, 2007.

SHENK, S.; WESTERHAUS, M. O. Near infrared reflectance analysis with single and multiproduct calibrations. Crop Science, v. 33, n. 3, p. 582-584, 1993. DOI: https://doi.org/10.2135/cropsci1993.0011183X003300030032x

SIESLER, H. W.; OZAKI, Y.; KAWATA, S.; HEISE, H. M. Near-infrared spectroscopy: principles, instruments, applications. [S. l.]: John Wiley & Sons, 2008. cap. 10, p. 1-15.

SILUÉ, N.; BASTIANELLI, D.; MEURET, M.; HASSOUN, P.; JOUVEN, M. Functional classification by NIRS of plant parts selected by sheep on a shrubby rangeland. Options Méditerranéennes, n. 114, p. 71, 2016.

TILLEY, J. M. A.; TERRY, R. A. A two‐stage technique for the in vitro digestion of forage crops. Grass and Forage Science, v. 18, n. 2, p. 104-111, 1963. DOI: https://doi.org/10.1111/j.1365-2494.1963.tb00335.x

VAN SOEST, P. J. Nutritional ecology of the ruminant. 2. ed. Ithaca: Cornell University Press, 1994. 476 p. DOI: https://doi.org/10.7591/9781501732355

WALKER, J. W.; MCCOY, S. D.; LAUNCHBAUGH, K. L.; FRAKER, M. J.; POWELL, J. Calibrating fecal NIRS equations for predicting botanical composition of diets. Journal of Range Management, p. 374-382, 2002. DOI: https://doi.org/10.2307/4003474

WILSON, A. D. Comparison of sheep and cattle grazing on a semiarid grassland. Crop and Pasture Science, v. 27, n. 1, p. 155-162, 1976. DOI: https://doi.org/10.1071/AR9760155

ZAMORA, P. P.; PONCE, L. C.; NAGATA, N.; POPPI, R. J. Alternativas quimiométricas para a resolução de problemas analíticos clássicos. Determinação espectrofotométrica de misturas de zircônio e háfnio. Química Nova, v. 20, n. 5, p. 469-474, 1997. DOI: https://doi.org/10.1590/S0100-40421997000500005

ZHANG, L. G.; ZHANG, X.; NI, L. J.; XUE, Z. B.; GU, X.; HUANG, S. X. Rapid identification of adulterated cow milk by non-linear pattern recognition methods based on near infrared spectroscopy. Food Chemistry, v. 145, p. 342-348, 2014. DOI: https://doi.org/10.1016/j.foodchem.2013.08.064

Downloads

Publicado

07/11/2024

Como Citar

André Júnior, J., Freitas Guedes, L., Felipe Martins Neves, L., Borges, I., Fonseca Alves Campos, C., Costa Araújo, C., … Luzia Rodrigues Fonseca, F. (2024). ESPECTROSCOPIA NO INFRAVERMELHO PRÓXIMO (NIR) APLICADA NO MONITORAMENTO DA NUTRIÇÃO DE RUMINANTES. RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 5(11), e5115873. https://doi.org/10.47820/recima21.v5i11.5873