SIMULACIONES COMPUTACIONALES UTILIZANDO SMOOTHED PARTICLE HYDRODYNAMICS PARA LA BÚSQUEDA DE MÍNIMOS DE FUNCIONES

Autores/as

DOI:

https://doi.org/10.47820/recima21.v6i12.7119

Palabras clave:

Hidrodinámica de Partículas Suavizadas. Problemas de optimización. Simulación computacional.

Resumen

La Hidrodinámica de Partículas Suavizadas, o del inglés Smoothed Particle Hydrodynamics (SPH), es un procedimiento computacional utilizado para simulaciones en medios continuos, como procesos mecánicos y flujos de fluidos, que ha ganado creciente relevancia en la representación de la dinámica de fluidos. Dado un sistema físico compuesto por partículas, el SPH calcula la presión sobre cada partícula considerando las interacciones con sus partículas vecinas, simulando así la dinámica del sistema como un fluido. El objetivo de este trabajo es utilizar la técnica SPH para la búsqueda de mínimos de funciones, simulando la caída gravitacional de un conjunto de partículas sobre una superficie. Esta superficie está representada por una función matemática cuyo mínimo global se desea encontrar.
El uso del SPH, tradicionalmente aplicado en simulaciones físicas e industriales, se explora aquí como una prueba de concepto, demostrando que la técnica también puede adaptarse a problemas de optimización. A través de la dinámica de flujo de las partículas sobre la superficie analizada, es posible identificar la partícula que alcanza el valor mínimo, localizando el punto de mínimo en el dominio de la función. Se realizaron diversos experimentos con funciones que poseen múltiples mínimos locales y un mínimo global, y los resultados mostraron que el SPH es capaz de identificar dicho mínimo con precisión. Para efectos de comparación, también se llevaron a cabo pruebas con la técnica PSO (Particle Swarm Optimization). Los resultados demuestran que el desempeño del SPH es comparable al del PSO.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Igor Ferreira Tavares, UFRPE

    Mestre em Informática Aplicada pela Universidade Federal Rural de Pernambuco. Especialização em Ensino da Matemática pelo Instituto Federal de Pernambuco. Licenciatura em Matemática pela Faculdade de Ciências Humanas e Sociais de Igarassu.

  • Tiago Alessandro E. Ferreira, UFRPE

    Graduação, Bacharelado e Mestrado em Física pelo Departamento de Física da Universidade Federal de Pernambuco. Doutorado em Física pela Universidade de São Paulo. Doutorado em Ciências da Computação pela Universidade Federal de Pernambuco. Pós-doutorado pela Harvard University. Professor Titular da Universidade Federal Rural de Pernambuco.

Referencias

ADAMI, Stefan; HU, Xiangyu; ADAMS, Nikolaus A. A transport-velocity formulation for smoothed particle hydrodynamics. Journal of Computational Physics, v. 241, p. 292–307, 2013. DOI: https://doi.org/10.1016/j.jcp.2013.01.043

ANTONY, Justin; MANIYERI, Ranjith. Numerical simulation of fluid flow in a channel using smoothed particle hydrodynamics. In: Proceedings of 65th Congress of ISTAM, 2020. Disponível em: https://istam.iitkgp.ac.in/resources/2020/proceedings/Full_paper/FM/90fullpaper.pdf. Acesso em: 9 set. 2025.

ANTUONO, M.; DI MASCIO, A.; ASADI, H. et al. Smoothed particle hydrodynamics method from a large eddy simulation perspective: generalization to a quasi-Lagrangian model. Physics of Fluids, v. 33, n. 1, p. 015102, 2021. DOI: https://doi.org/10.1063/5.0034568

ARORA, Krishan; KUMAR, Ashok; KAMBOJ, Vikram Kumar et al. Optimization methodologies and testing on standard benchmark functions of load frequency control for interconnected multi-area power system in smart grids. Mathematics, v. 8, n. 6, p. 980, 2020. DOI: https://doi.org/10.3390/math8060980

ASADI, Hossein; RIAZI, Masoud; MOHAMMADI, Masoud. Investigation of hydrodynamically dominated membrane rupture using smoothed particle hydrodynamics–finite element method. Fluids, v. 4, n. 3, p. 149, 2019. DOI: https://doi.org/10.3390/fluids4030149

ATLURI, Satya N.; ZHU, Tulong. A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Computational Mechanics, v. 22, n. 2, p. 117–127, 1998. DOI: https://doi.org/10.1007/s004660050346

AZRAG, Mohammed Adam Kunna; KADIR, Tuty Asmawaty Abdul; ALI, Noorlin Mohd. A comparison of particle swarm optimization and global African buffalo optimization. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2020. p. 012034. DOI: https://doi.org/10.1088/1757-899X/769/1/012034

BASHIR, Hassan Abdullahi. Diversity control in evolutionary computation using asynchronous dual-populations with search space partitioning. Nigerian Journal of Technological Development, v. 17, n. 3, p. 175–188, 2020. DOI: https://doi.org/10.4314/njtd.v17i3.4

BELYTSCHKO, Ted; LU, Yun Yun; GU. Lei. Element‐free Galerkin methods. International Journal for Numerical Methods in Engineering, v. 37, n. 2, p. 229–256, 1994. DOI: https://doi.org/10.1002/nme.1620370205

CISTERNAS, Luis A.; LUCAY, Freddy A.; BOTERO, Yesica L. Trends in modeling, design, and optimization of multiphase systems in minerals processing. Minerals, v. 10, n. 1, p. 22, 2019. DOI: https://doi.org/10.3390/min10010022

CLEARY, Paul W. et al. Inclusion of incremental damage breakage of particles and slurry rheology into a particle scale multiphase model of a SAG mill. Minerals Engineering, v. 128, p. 92–105, 2018. DOI: https://doi.org/10.1016/j.mineng.2018.08.026

CLEARY, Paul W.; SINNOTT, Matt; MORRISON, Rob. Prediction of slurry transport in SAG mills using SPH fluid flow in a dynamic DEM based porous media. Minerals Engineering, v. 19, n. 15, p. 1517–1527, 2006. DOI: https://doi.org/10.1016/j.mineng.2006.08.018

CUNDALL, P. A.; STRACK, O. D. L. A discrete numerical model for granular assemblies. Géotechnique, v. 29, n. 1, p. 47–65, 1979. DOI: https://doi.org/10.1680/geot.1979.29.1.47

DE ANDA-SUÁREZ, Juan et al. Evolutionary Gaussian-gradient: a new optimization algorithm for the electromechanical design of gravitational batteries. In: Hybrid Intelligent Systems Based on Extensions of Fuzzy Logic, Neural Networks and Metaheuristics. Cham: Springer Nature Switzerland, 2023. p. 347–364. DOI: https://doi.org/10.1007/978-3-031-28999-6_22

DOMÍNGUEZ, J. M. et al. Neighbour lists in smoothed particle hydrodynamics. International Journal for Numerical Methods in Fluids, v. 67, n. 12, p. 2026–2042, 2011. DOI: https://doi.org/10.1002/fld.2481

DUAN, Shaomi; LUO, Huilong; LIU, Haipeng. A multi-strategy seeker optimization algorithm for optimization constrained engineering problems. IEEE Access, v. 10, p. 7165–7195, 2022. DOI: https://doi.org/10.1109/ACCESS.2022.3141908

FUCHS, Sebastian L. et al. An SPH framework for fluid–solid and contact interaction problems including thermo-mechanical coupling and reversible phase transitions. Advanced Modeling and Simulation in Engineering Sciences, v. 8, n. 1, p. 1–33, 2021. DOI: https://doi.org/10.1186/s40323-021-00200-w

GAO, Hongwei et al. Robust bacterial foraging algorithms based on few-excellent-individuals guidance strategy. Sensors & Materials, v. 32, 2020. DOI: https://doi.org/10.18494/SAM.2020.2571

GINGOLD, Robert A.; MONAGHAN, Joseph J. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, v. 181, n. 3, p. 375–389, 1977. DOI: https://doi.org/10.1093/mnras/181.3.375

GOMEZ-GESTEIRA, Moncho et al. State-of-the-art of classical SPH for free-surface flows. Journal of Hydraulic Research, v. 48, n. sup1, p. 6–27, 2010. DOI: https://doi.org/10.1080/00221686.2010.9641242

GRANT-PETERS, Jonathan; HAUSER, Raphael. A seven-point algorithm for piecewise smooth univariate minimization. arXiv preprint, arXiv:2012.06553, 2020. Disponível em: https://arxiv.org/abs/2012.06553. Acesso em: 9 set. 2025.

HERNQUIST, Lars; KATZ, Neal. TREESPH-A unification of SPH with the hierarchical tree method. Astrophysical Journal Supplement Series, v. 70, p. 419–446, 1989. DOI: https://doi.org/10.1086/191344

HU, D. A. et al. A meshless local Petrov–Galerkin method for large deformation contact analysis of elastomers. Engineering Analysis with Boundary Elements, v. 31, n. 7, p. 657–666, 2007. DOI: https://doi.org/10.1016/j.enganabound.2006.11.005

INFINITY77. A one-dimensional test functions platform with multiple local and global minima. [S. l.]: INFINITY77, s. d. Disponível em: https://infinity77.net/global_optimization/test_functions_1d.html#d-test-functions. Acesso em: 18 dez. 2023.

KASHYAP, Katyayani; SHARMA, Tarun K.; RAJPUROHIT, Jitendra. Logistic map and wavelet transform based differential evolution. International Journal of System Assurance Engineering and Management, v. 11, p. 506–514, 2020. DOI: https://doi.org/10.1007/s13198-019-00920-8

KENNEDY, James; EBERHART, Russell. Particle swarm optimization. In: Proceedings of ICNN'95-International Conference on Neural Networks - IEEE, 1995. p. 1942–1948. DOI: https://doi.org/10.1109/ICNN.1995.488968

KOSCHIER, Dan et al. Smoothed particle hydrodynamics techniques for the physics-based simulation of fluids and solids. arXiv preprint, arXiv:2009.06944, 2020. Disponível em: https://arxiv.org/abs/2009.06944. Acesso em: 9 set. 2025.

LEVEQUE, Randall J. Finite Volume Methods for Hyperbolic Problems. Cambridge: Cambridge University Press, 2002. Disponível em: https://link.springer.com/book/10.1007/978-0-8176-8394-8. Acesso em: 22 jun. 2025. DOI: https://doi.org/10.1017/CBO9780511791253

LIND, Steven J.; ROGERS, Benedict D.; STANSBY, Peter K. Review of smoothed particle hydrodynamics: towards converged Lagrangian flow modelling. Proceedings of the Royal Society A, v. 476, n. 2241, p. 20190801, 2020. DOI: https://doi.org/10.1098/rspa.2019.0801

LIU, Gui-Rong; LIU, Moubin B. Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, 2003. DOI: https://doi.org/10.1142/9789812564405

LIU, Wing-Kam; LI, Shaofan; BELYTSCHKO, Ted. Moving least-square reproducing kernel methods (I) methodology and convergence. Computer Methods in Applied Mechanics and Engineering, v. 143, n. 1-2, p. 113–154, 1997. DOI: https://doi.org/10.1016/S0045-7825(96)01132-2

LUCY, Leon B. A numerical approach to the testing of the fission hypothesis. Astronomical Journal, v. 82, p. 1013–1024, 1977. DOI: https://doi.org/10.1086/112164

MIRANDA, J. Pyswarm: Particle Swarm Optimization (PSO) for Python. [S. l. s. n.], s. d. Disponível em: https://github.com/tisimst/pyswarm. Acesso em: 27 jun. 2025.

MOHAMMADI, Masoud; RIAZI, Masoud. Applicable investigation of SPH in characterization of fluid flow in uniform and non-uniform periodic porous media. Sustainability, v. 14, n. 21, p. 14320, 2022. DOI: https://doi.org/10.3390/su142114320

MONAGHAN, Joe J. Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics, v. 30, p. 543–574, 1992. DOI: https://doi.org/10.1146/annurev.astro.30.1.543

MONAGHAN, Joe J. Smoothed particle hydrodynamics. Reports on Progress in Physics, v. 68, n. 8, p. 1703–1759, 2005. DOI: https://doi.org/10.1088/0034-4885/68/8/R01

MORTON, Guy M. A computer oriented geodetic data base and a new technique in file sequencing. [S. l. s. n.], 1966. Disponível em: https://apps.dtic.mil/sti/citations/AD0253260. Acesso em: 9 set. 2025.

MOUNTRIS, Konstantinos A. et al. An explicit total Lagrangian fragile points method for finite deformation of hyperelastic materials. Engineering Analysis with Boundary Elements, v. 151, p. 255–264, 2023. DOI: https://doi.org/10.1016/j.enganabound.2023.03.001

MYERS, Conner et al. A hybrid finite volume method and smoothed particle hydrodynamics approach for efficient and accurate blast simulations. Frontiers in Physics, v. 11, p. 1325294, 2024. DOI: https://doi.org/10.3389/fphy.2023.1325294

MYERS, Conner; PALMER, Todd; PALMER, Camille. A hybrid finite volume-smoothed particle hydrodynamics approach for shock capturing applications. Computer Methods in Applied Mechanics and Engineering, v. 417, p. 116412, 2023. DOI: https://doi.org/10.1016/j.cma.2023.116412

PAHLKE, Johannes; SBALZARINI, Ivo F. A unifying mathematical definition of particle methods. IEEE Open Journal of the Computer Society, 2023. DOI: https://doi.org/10.1109/OJCS.2023.3254466

RAJA, Vijayakumar et al. Modeling and simulation of 3D food printing systems: scope, advances, and challenges. Foods, v. 12, n. 18, p. 3412, 2023. DOI: https://doi.org/10.3390/foods12183412

RAMACHANDRAN, Prabhu et al. PySPH: a Python-based framework for smoothed particle hydrodynamics. ACM Transactions on Mathematical Software (TOMS), v. 47, n. 4, p. 1–38, 2021. DOI: https://doi.org/10.1145/3460773

RAMACHANDRAN, Prabhu; PURI, Kunal. Entropically damped artificial compressibility for SPH. Computers & Fluids, v. 179, p. 579–594, 2019. DOI: https://doi.org/10.1016/j.compfluid.2018.11.023

SPRINGEL, Volker. The cosmological simulation code GADGET-2. Monthly Notices of the Royal Astronomical Society, v. 364, n. 4, p. 1105–1134, 2005. DOI: https://doi.org/10.1111/j.1365-2966.2005.09655.x

TSENG, Hsuan-Yu et al. Particle swarm optimization for nonlinear constrained optimization problems. IEEE Access, v. 9, p. 124757–124767, 2021. DOI: https://doi.org/10.1109/ACCESS.2021.3110708

VACONDIO, Renato et al. Grand challenges for smoothed particle hydrodynamics numerical schemes. Computational Particle Mechanics, v. 8, p. 575–588, 2021. DOI: https://doi.org/10.1007/s40571-020-00354-1

VIOLEAU, Damien. Fluid mechanics and the SPH method: theory and applications. Oxford: Oxford University Press, 2012. DOI: https://doi.org/10.1093/acprof:oso/9780199655526.001.0001

WANG, Chau-Shing et al. Process parameter prediction and modeling of laser percussion drilling by artificial neural networks. Micromachines, v. 13, n. 4, p. 529, 2022. DOI: https://doi.org/10.3390/mi13040529

WANG, Mengdi et al. Thin-film smoothed particle hydrodynamics fluid. ACM Transactions on Graphics (TOG), v. 40, n. 4, p. 1–16, 2021. DOI: https://doi.org/10.1145/3450626.3459864

WU, Qiang; PENG, PiaoPiao; CHENG, YuMin. The interpolating element-free Galerkin method for elastic large deformation problems. Science China Technological Sciences, v. 64, n. 2, p. 364–374, 2021. DOI: https://doi.org/10.1007/s11431-019-1583-y

XI, Runping et al. Survey on smoothed particle hydrodynamics and the particle systems. IEEE Access, v. 8, p. 3087–3105, 2019. DOI: https://doi.org/10.1109/ACCESS.2019.2962082

YE, Ting et al. Smoothed particle hydrodynamics (SPH) for complex fluid flows: recent developments in methodology and applications. Physics of Fluids, v. 31, n. 1, p. 017101, 2019. DOI: https://doi.org/10.1063/1.5068697

ZHANG, Tingyu et al. SPH modeling of water-related natural hazards. Scientific Journal of Technology, v. 3, n. 9, p. 1–12, 2021.

Publicado

23/12/2025

Cómo citar

SIMULACIONES COMPUTACIONALES UTILIZANDO SMOOTHED PARTICLE HYDRODYNAMICS PARA LA BÚSQUEDA DE MÍNIMOS DE FUNCIONES. (2025). RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 6(12), e6127119. https://doi.org/10.47820/recima21.v6i12.7119