SIMULACIONES COMPUTACIONALES UTILIZANDO SMOOTHED PARTICLE HYDRODYNAMICS PARA LA BÚSQUEDA DE MÍNIMOS DE FUNCIONES
DOI:
https://doi.org/10.47820/recima21.v6i12.7119Palabras clave:
Hidrodinámica de Partículas Suavizadas. Problemas de optimización. Simulación computacional.Resumen
La Hidrodinámica de Partículas Suavizadas, o del inglés Smoothed Particle Hydrodynamics (SPH), es un procedimiento computacional utilizado para simulaciones en medios continuos, como procesos mecánicos y flujos de fluidos, que ha ganado creciente relevancia en la representación de la dinámica de fluidos. Dado un sistema físico compuesto por partículas, el SPH calcula la presión sobre cada partícula considerando las interacciones con sus partículas vecinas, simulando así la dinámica del sistema como un fluido. El objetivo de este trabajo es utilizar la técnica SPH para la búsqueda de mínimos de funciones, simulando la caída gravitacional de un conjunto de partículas sobre una superficie. Esta superficie está representada por una función matemática cuyo mínimo global se desea encontrar.
El uso del SPH, tradicionalmente aplicado en simulaciones físicas e industriales, se explora aquí como una prueba de concepto, demostrando que la técnica también puede adaptarse a problemas de optimización. A través de la dinámica de flujo de las partículas sobre la superficie analizada, es posible identificar la partícula que alcanza el valor mínimo, localizando el punto de mínimo en el dominio de la función. Se realizaron diversos experimentos con funciones que poseen múltiples mínimos locales y un mínimo global, y los resultados mostraron que el SPH es capaz de identificar dicho mínimo con precisión. Para efectos de comparación, también se llevaron a cabo pruebas con la técnica PSO (Particle Swarm Optimization). Los resultados demuestran que el desempeño del SPH es comparable al del PSO.
Descargas
Referencias
ADAMI, Stefan; HU, Xiangyu; ADAMS, Nikolaus A. A transport-velocity formulation for smoothed particle hydrodynamics. Journal of Computational Physics, v. 241, p. 292–307, 2013. DOI: https://doi.org/10.1016/j.jcp.2013.01.043
ANTONY, Justin; MANIYERI, Ranjith. Numerical simulation of fluid flow in a channel using smoothed particle hydrodynamics. In: Proceedings of 65th Congress of ISTAM, 2020. Disponível em: https://istam.iitkgp.ac.in/resources/2020/proceedings/Full_paper/FM/90fullpaper.pdf. Acesso em: 9 set. 2025.
ANTUONO, M.; DI MASCIO, A.; ASADI, H. et al. Smoothed particle hydrodynamics method from a large eddy simulation perspective: generalization to a quasi-Lagrangian model. Physics of Fluids, v. 33, n. 1, p. 015102, 2021. DOI: https://doi.org/10.1063/5.0034568
ARORA, Krishan; KUMAR, Ashok; KAMBOJ, Vikram Kumar et al. Optimization methodologies and testing on standard benchmark functions of load frequency control for interconnected multi-area power system in smart grids. Mathematics, v. 8, n. 6, p. 980, 2020. DOI: https://doi.org/10.3390/math8060980
ASADI, Hossein; RIAZI, Masoud; MOHAMMADI, Masoud. Investigation of hydrodynamically dominated membrane rupture using smoothed particle hydrodynamics–finite element method. Fluids, v. 4, n. 3, p. 149, 2019. DOI: https://doi.org/10.3390/fluids4030149
ATLURI, Satya N.; ZHU, Tulong. A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Computational Mechanics, v. 22, n. 2, p. 117–127, 1998. DOI: https://doi.org/10.1007/s004660050346
AZRAG, Mohammed Adam Kunna; KADIR, Tuty Asmawaty Abdul; ALI, Noorlin Mohd. A comparison of particle swarm optimization and global African buffalo optimization. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2020. p. 012034. DOI: https://doi.org/10.1088/1757-899X/769/1/012034
BASHIR, Hassan Abdullahi. Diversity control in evolutionary computation using asynchronous dual-populations with search space partitioning. Nigerian Journal of Technological Development, v. 17, n. 3, p. 175–188, 2020. DOI: https://doi.org/10.4314/njtd.v17i3.4
BELYTSCHKO, Ted; LU, Yun Yun; GU. Lei. Element‐free Galerkin methods. International Journal for Numerical Methods in Engineering, v. 37, n. 2, p. 229–256, 1994. DOI: https://doi.org/10.1002/nme.1620370205
CISTERNAS, Luis A.; LUCAY, Freddy A.; BOTERO, Yesica L. Trends in modeling, design, and optimization of multiphase systems in minerals processing. Minerals, v. 10, n. 1, p. 22, 2019. DOI: https://doi.org/10.3390/min10010022
CLEARY, Paul W. et al. Inclusion of incremental damage breakage of particles and slurry rheology into a particle scale multiphase model of a SAG mill. Minerals Engineering, v. 128, p. 92–105, 2018. DOI: https://doi.org/10.1016/j.mineng.2018.08.026
CLEARY, Paul W.; SINNOTT, Matt; MORRISON, Rob. Prediction of slurry transport in SAG mills using SPH fluid flow in a dynamic DEM based porous media. Minerals Engineering, v. 19, n. 15, p. 1517–1527, 2006. DOI: https://doi.org/10.1016/j.mineng.2006.08.018
CUNDALL, P. A.; STRACK, O. D. L. A discrete numerical model for granular assemblies. Géotechnique, v. 29, n. 1, p. 47–65, 1979. DOI: https://doi.org/10.1680/geot.1979.29.1.47
DE ANDA-SUÁREZ, Juan et al. Evolutionary Gaussian-gradient: a new optimization algorithm for the electromechanical design of gravitational batteries. In: Hybrid Intelligent Systems Based on Extensions of Fuzzy Logic, Neural Networks and Metaheuristics. Cham: Springer Nature Switzerland, 2023. p. 347–364. DOI: https://doi.org/10.1007/978-3-031-28999-6_22
DOMÍNGUEZ, J. M. et al. Neighbour lists in smoothed particle hydrodynamics. International Journal for Numerical Methods in Fluids, v. 67, n. 12, p. 2026–2042, 2011. DOI: https://doi.org/10.1002/fld.2481
DUAN, Shaomi; LUO, Huilong; LIU, Haipeng. A multi-strategy seeker optimization algorithm for optimization constrained engineering problems. IEEE Access, v. 10, p. 7165–7195, 2022. DOI: https://doi.org/10.1109/ACCESS.2022.3141908
FUCHS, Sebastian L. et al. An SPH framework for fluid–solid and contact interaction problems including thermo-mechanical coupling and reversible phase transitions. Advanced Modeling and Simulation in Engineering Sciences, v. 8, n. 1, p. 1–33, 2021. DOI: https://doi.org/10.1186/s40323-021-00200-w
GAO, Hongwei et al. Robust bacterial foraging algorithms based on few-excellent-individuals guidance strategy. Sensors & Materials, v. 32, 2020. DOI: https://doi.org/10.18494/SAM.2020.2571
GINGOLD, Robert A.; MONAGHAN, Joseph J. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, v. 181, n. 3, p. 375–389, 1977. DOI: https://doi.org/10.1093/mnras/181.3.375
GOMEZ-GESTEIRA, Moncho et al. State-of-the-art of classical SPH for free-surface flows. Journal of Hydraulic Research, v. 48, n. sup1, p. 6–27, 2010. DOI: https://doi.org/10.1080/00221686.2010.9641242
GRANT-PETERS, Jonathan; HAUSER, Raphael. A seven-point algorithm for piecewise smooth univariate minimization. arXiv preprint, arXiv:2012.06553, 2020. Disponível em: https://arxiv.org/abs/2012.06553. Acesso em: 9 set. 2025.
HERNQUIST, Lars; KATZ, Neal. TREESPH-A unification of SPH with the hierarchical tree method. Astrophysical Journal Supplement Series, v. 70, p. 419–446, 1989. DOI: https://doi.org/10.1086/191344
HU, D. A. et al. A meshless local Petrov–Galerkin method for large deformation contact analysis of elastomers. Engineering Analysis with Boundary Elements, v. 31, n. 7, p. 657–666, 2007. DOI: https://doi.org/10.1016/j.enganabound.2006.11.005
INFINITY77. A one-dimensional test functions platform with multiple local and global minima. [S. l.]: INFINITY77, s. d. Disponível em: https://infinity77.net/global_optimization/test_functions_1d.html#d-test-functions. Acesso em: 18 dez. 2023.
KASHYAP, Katyayani; SHARMA, Tarun K.; RAJPUROHIT, Jitendra. Logistic map and wavelet transform based differential evolution. International Journal of System Assurance Engineering and Management, v. 11, p. 506–514, 2020. DOI: https://doi.org/10.1007/s13198-019-00920-8
KENNEDY, James; EBERHART, Russell. Particle swarm optimization. In: Proceedings of ICNN'95-International Conference on Neural Networks - IEEE, 1995. p. 1942–1948. DOI: https://doi.org/10.1109/ICNN.1995.488968
KOSCHIER, Dan et al. Smoothed particle hydrodynamics techniques for the physics-based simulation of fluids and solids. arXiv preprint, arXiv:2009.06944, 2020. Disponível em: https://arxiv.org/abs/2009.06944. Acesso em: 9 set. 2025.
LEVEQUE, Randall J. Finite Volume Methods for Hyperbolic Problems. Cambridge: Cambridge University Press, 2002. Disponível em: https://link.springer.com/book/10.1007/978-0-8176-8394-8. Acesso em: 22 jun. 2025. DOI: https://doi.org/10.1017/CBO9780511791253
LIND, Steven J.; ROGERS, Benedict D.; STANSBY, Peter K. Review of smoothed particle hydrodynamics: towards converged Lagrangian flow modelling. Proceedings of the Royal Society A, v. 476, n. 2241, p. 20190801, 2020. DOI: https://doi.org/10.1098/rspa.2019.0801
LIU, Gui-Rong; LIU, Moubin B. Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, 2003. DOI: https://doi.org/10.1142/9789812564405
LIU, Wing-Kam; LI, Shaofan; BELYTSCHKO, Ted. Moving least-square reproducing kernel methods (I) methodology and convergence. Computer Methods in Applied Mechanics and Engineering, v. 143, n. 1-2, p. 113–154, 1997. DOI: https://doi.org/10.1016/S0045-7825(96)01132-2
LUCY, Leon B. A numerical approach to the testing of the fission hypothesis. Astronomical Journal, v. 82, p. 1013–1024, 1977. DOI: https://doi.org/10.1086/112164
MIRANDA, J. Pyswarm: Particle Swarm Optimization (PSO) for Python. [S. l. s. n.], s. d. Disponível em: https://github.com/tisimst/pyswarm. Acesso em: 27 jun. 2025.
MOHAMMADI, Masoud; RIAZI, Masoud. Applicable investigation of SPH in characterization of fluid flow in uniform and non-uniform periodic porous media. Sustainability, v. 14, n. 21, p. 14320, 2022. DOI: https://doi.org/10.3390/su142114320
MONAGHAN, Joe J. Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics, v. 30, p. 543–574, 1992. DOI: https://doi.org/10.1146/annurev.astro.30.1.543
MONAGHAN, Joe J. Smoothed particle hydrodynamics. Reports on Progress in Physics, v. 68, n. 8, p. 1703–1759, 2005. DOI: https://doi.org/10.1088/0034-4885/68/8/R01
MORTON, Guy M. A computer oriented geodetic data base and a new technique in file sequencing. [S. l. s. n.], 1966. Disponível em: https://apps.dtic.mil/sti/citations/AD0253260. Acesso em: 9 set. 2025.
MOUNTRIS, Konstantinos A. et al. An explicit total Lagrangian fragile points method for finite deformation of hyperelastic materials. Engineering Analysis with Boundary Elements, v. 151, p. 255–264, 2023. DOI: https://doi.org/10.1016/j.enganabound.2023.03.001
MYERS, Conner et al. A hybrid finite volume method and smoothed particle hydrodynamics approach for efficient and accurate blast simulations. Frontiers in Physics, v. 11, p. 1325294, 2024. DOI: https://doi.org/10.3389/fphy.2023.1325294
MYERS, Conner; PALMER, Todd; PALMER, Camille. A hybrid finite volume-smoothed particle hydrodynamics approach for shock capturing applications. Computer Methods in Applied Mechanics and Engineering, v. 417, p. 116412, 2023. DOI: https://doi.org/10.1016/j.cma.2023.116412
PAHLKE, Johannes; SBALZARINI, Ivo F. A unifying mathematical definition of particle methods. IEEE Open Journal of the Computer Society, 2023. DOI: https://doi.org/10.1109/OJCS.2023.3254466
RAJA, Vijayakumar et al. Modeling and simulation of 3D food printing systems: scope, advances, and challenges. Foods, v. 12, n. 18, p. 3412, 2023. DOI: https://doi.org/10.3390/foods12183412
RAMACHANDRAN, Prabhu et al. PySPH: a Python-based framework for smoothed particle hydrodynamics. ACM Transactions on Mathematical Software (TOMS), v. 47, n. 4, p. 1–38, 2021. DOI: https://doi.org/10.1145/3460773
RAMACHANDRAN, Prabhu; PURI, Kunal. Entropically damped artificial compressibility for SPH. Computers & Fluids, v. 179, p. 579–594, 2019. DOI: https://doi.org/10.1016/j.compfluid.2018.11.023
SPRINGEL, Volker. The cosmological simulation code GADGET-2. Monthly Notices of the Royal Astronomical Society, v. 364, n. 4, p. 1105–1134, 2005. DOI: https://doi.org/10.1111/j.1365-2966.2005.09655.x
TSENG, Hsuan-Yu et al. Particle swarm optimization for nonlinear constrained optimization problems. IEEE Access, v. 9, p. 124757–124767, 2021. DOI: https://doi.org/10.1109/ACCESS.2021.3110708
VACONDIO, Renato et al. Grand challenges for smoothed particle hydrodynamics numerical schemes. Computational Particle Mechanics, v. 8, p. 575–588, 2021. DOI: https://doi.org/10.1007/s40571-020-00354-1
VIOLEAU, Damien. Fluid mechanics and the SPH method: theory and applications. Oxford: Oxford University Press, 2012. DOI: https://doi.org/10.1093/acprof:oso/9780199655526.001.0001
WANG, Chau-Shing et al. Process parameter prediction and modeling of laser percussion drilling by artificial neural networks. Micromachines, v. 13, n. 4, p. 529, 2022. DOI: https://doi.org/10.3390/mi13040529
WANG, Mengdi et al. Thin-film smoothed particle hydrodynamics fluid. ACM Transactions on Graphics (TOG), v. 40, n. 4, p. 1–16, 2021. DOI: https://doi.org/10.1145/3450626.3459864
WU, Qiang; PENG, PiaoPiao; CHENG, YuMin. The interpolating element-free Galerkin method for elastic large deformation problems. Science China Technological Sciences, v. 64, n. 2, p. 364–374, 2021. DOI: https://doi.org/10.1007/s11431-019-1583-y
XI, Runping et al. Survey on smoothed particle hydrodynamics and the particle systems. IEEE Access, v. 8, p. 3087–3105, 2019. DOI: https://doi.org/10.1109/ACCESS.2019.2962082
YE, Ting et al. Smoothed particle hydrodynamics (SPH) for complex fluid flows: recent developments in methodology and applications. Physics of Fluids, v. 31, n. 1, p. 017101, 2019. DOI: https://doi.org/10.1063/1.5068697
ZHANG, Tingyu et al. SPH modeling of water-related natural hazards. Scientific Journal of Technology, v. 3, n. 9, p. 1–12, 2021.
Descargas
Publicado
Número
Sección
Categorías
Licencia
Derechos de autor 2025 RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECIMA21, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECIMA21 apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.








