RESISTÊNCIA ANTIMICROBIANA PÓS-COVID-19: REVISÃO DE LITERATURA

Autores

  • Beatriz Izilda Minante
  • Giovana Girardi Ticotosti
  • Isabella Silva Barros
  • Marcela Bocalete Balieiro
  • Milena Euzébio Rodrigues da Silva
  • Cristiane Tefé-Silva
  • Karina Furlani Zoccal https://orcid.org/0000-0002-9988-1009

DOI:

https://doi.org/10.47820/recima21.v3i3.1266

Palavras-chave:

COVID-19, Infecções, Resistência

Resumo

O novo Coronavírus atinge as células do trato respiratório inferior, iniciando um processo inflamatório. Diante dessa infecção, compete ao sistema imune a eliminação de agentes, a homeostasia celular, reparação tecidual e geração de imunidade de memória. Quando há uma falha nessa via, esse sistema encontra uma série de dificuldades para a retomada do equilíbrio, além de infecções secundárias, levando a complicações clínicas adicionais. Assim, este estudo buscou abordar a resposta imunológica frente ao Sars-CoV-2, e as principais infecções secundárias pós-Covid (bacterianas e fúngicas) e a resistência antimicrobiana nesse contexto. Trata-se de uma revisão de literatura realizada a partir da análise de periódicos provenientes das seguintes plataformas acadêmicas: Google Acadêmico, Center for Biotechnology Information (PubMed), Science Direct, Biblioteca eletrônica Scientific Eletronic Library Online (SciELO) e Scopus. A pesquisa foi delimitada em um intervalo de 2003 a 2021, usando como ferramenta de busca palavras-chaves COVID-19; Resposta imunológica; Infecções bacterianas; Infecções fúngicas; Resistência. Os resultados obtidos nos estudos demonstram o impacto das infecções secundárias na mortalidade, com isso, dentre as principais infecções, se destacam as bacterianas (84%), incluindo principalmente os agentes: Staphylococcus aureus, Streptococcus pneumoniae, Clostridioides difficile e Mycoplasma pneumoniae. Quanto às infecções secundárias fúngicas, as espécies Aspergillus sp. e Candida acometeram principalmente pacientes em estado grave. Com base nos dados, uma problemática evidente foi à dificuldade de identificação do agente causador da infecção secundária, acarretando em cenário de intensa utilização de antibióticos de amplo espectro, contribuindo para a seleção de patógenos resistentes e, de maneira controversa, a piora no prognóstico do paciente.

Downloads

Não há dados estatísticos.

Biografia do Autor

Beatriz Izilda Minante

Acadêmica do curso de Medicina do Centro Universitário Barão de Mauá.

Giovana Girardi Ticotosti

Acadêmica do curso de Medicina do Centro Universitário Barão de Mauá.

Isabella Silva Barros

Acadêmica do curso de Medicina do Centro Universitário Barão de Mauá.

Marcela Bocalete Balieiro

Acadêmica do curso de Medicina do Centro Universitário Barão de Mauá.

Milena Euzébio Rodrigues da Silva

Acadêmica do curso de Medicina do Centro Universitário Barão de Mauá.

Cristiane Tefé-Silva

Docente do Centro Universitário Barão de Mauá.

Karina Furlani Zoccal

Docente do Centro Universitário Barão de Mauá, Ribeirão Preto, São Paulo, Brasil. 

Referências

Beadling, C., & Slifka, M. K. (2004). How do viral infections predispose patients to bacterial infections?. Current opinion in infectious diseases, 17(3), pp. 185–191.

Blanco-Melo, D., et al. (2020). Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell, 181(5), pp. 1036–1045.e9.

Brasil. Agência Brasil. Empresa Brasil de Comunicação (ed.). (2020). Organização Mundial da Saúde declara pandemia de coronavírus: atualmente, ao menos 115 países têm casos da doença. Df, 2020. Color. Disponível em: https://agenciabrasil.ebc.com.br/geral/noticia/2020-03/organizacao-mundial-da-saude-declara-pandemia-de-coronavirus. Acesso em: 19 jul. 2021.

Broggi, A., et al. (2020). Type III interferons disrupt the lung epithelial barrier upon viral recognition. Science (New York, N.Y.), 369(6504), pp. 706–712.

Caglar, K., et al. (2011). Investigation of interleukin-10, tumor necrosis factor-alpha and interferon-gamma expression in experimental model of pulmonary aspergillosis. Mikrobiyol Bul, 45(2), pp. 344-352.

Cai, S., Sun, W., Li, M. & Dong, L. (2020). A complex COVID-19 case with rheumatoid arthritis treated with tocilizumab. Clin Rheumatol 39, pp. 2797–2802.

Camargo, J. F., et al. (2015). Impaired T Cell Responsiveness to Interleukin-6 in Hematological Patients with Invasive Aspergillosis. PLOS ONE, p. e.0123171.

Chaudhry, B., et al. (2021). Post COVID-19 MSSA pneumonia. SAGE open medical case reports, 9, p. 2050313X211005996.

Contou, D., et al. (2020). Bacterial and viral co-infections in patients with severe SARS-CoV-2 pneumonia admitted to a French ICU. Annals of intensive care, 10(1), pp. 1-9.

Cusumano, J. A., et al. (2020). Staphylococcus aureus bacteremia in patients infected with COVID-19: a case series. In: Open forum infectious diseases, 7(11), p. ofaa518.

Duployez, C., et al. (2020). Panton-Valentine Leukocidin-Secreting Staphylococcus aureus Pneumonia Complicating COVID-19. Emerging infectious diseases, 26(8), pp. 1939–1941.

Fan, B. E., Lim, K., Chong, V., Chan, S., Ong, K. H., & Kuperan, P. (2020). COVID-19 and mycoplasma pneumoniae coinfection. American journal of hematology, 95(6), pp. 723–724.

Galvão, M. H. R. & Roncalli, A. G. (2020). Factors associated with increased risk of death from covid-19: a survival analysis based on confirmed cases. Revista Brasileira de Epidemiologia, v. 23.

Garcia-Vidal, C., et al. (2021). Incidence of co-infections and superinfections in hospitalized patients with COVID-19: a retrospective cohort study. Clinical Microbiology and Infection, 27(1), pp. 83-88, 2021.

Gonçalves, A. H. (2011). MECANISMO DE AÇÃO E TOXICIDADE DA ANFOTERICINA B NO TRATAMENTO DE MICOSES. 2011. 29 f. Monografia - Curso de Especialização de Microbiologia, ICB Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais - Ufmg., Belo Horizonte, 2011. Disponível em: https://repositorio.ufmg.br/handle/1843/BUOS-99WH86. Acesso em: 03 jul. 2021.

Granata, G., et al. (2020). The burden of Clostridioides difficile infection during the COVID-19 pandemic: a retrospective case-control study in Italian hospitals (CloVid). Journal of clinical medicine, 9(12), p. 3855.

Guo, Yan-Rong., et al. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Military Medical Research, 7(1), pp. 1-10.

Habas, K., et al. (2020). Resolution of coronavirus disease 2019 (COVID-19). Expert review of anti-infective therapy, 18(12), pp. 1201-1211.

Hajjeh, R. A., et al. (2004). Incidence of bloodstream infections due to Candida species and in vitro susceptibilities of isolates collected from 1998 to 2000 in a population-based active surveillance program. Journal of clinical microbiology, 42(4), pp. 1519-1527.

Hsu, J. (2020). How covid-19 is accelerating the threat of antimicrobial resistance. Bmj, [S.L.], pp. 1-2.

Hughes, S., et al. (2020). Bacterial and fungal coinfection among hospitalized patients with COVID-19: a retrospective cohort study in a UK secondary-care setting. Clinical Microbiology and Infection, 26 (10), pp. 1395-1399.

Huttner, B.D., Catho, G., Pano-Pardo, J.R., Pulcini, C. & Schouten, J. (2020). COVID-19: don't neglect antimicrobial stewardship principles!. Clinical Microbiology And Infection, 26(7), pp. 808-810.

In, Ying-Hui., et al. (2020). A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Military Medical Research, 7(1), pp. 1-23.

Iriarte, D. A. (2020). Resistência Bacteriana aos Macrolídeos: Um olhar sobre a azitromicina. 2020. 15 f. TCC (Graduação) - Curso de Medicina, Ufscar, São Carlos. Disponível em: https://repositorio.ufscar.br/bitstream/handle/ufscar/13515/TCC.%20Daniel%20Iriarte.pdf?sequence=1&isAllowed=y. Acesso em: 20 jul. 2021.

Iser, B. P. M., Sliva, I., Raymundo, V. T., Poleto, M. B., Schuelter-Trevisol, F. & Bobinski, F. (2020). Suspected COVID-19 case definition: a narrative review of the most frequent signs and symptoms among confirmed cases. Epidemiologia e Serviços de Saúde, 29(3).

Jia, L., et al. (2017). Mechanisms of severe mortality-associated bacterial co-infections following influenza virus infection. Frontiers in cellular and infection microbiology, 7, p. 338.

Lai, C. C. & Yu, W. L. (2020). COVID-19 associated with pulmonary aspergillosis: A literature review. Journal of Microbiology, Immunology and Infection, 54(1), pp. 46-53.

Lansbury, L., Lim, B., Baskaran, V. & Lim, W. S. (2020). Co-infections in people with COVID-19: a systematic review and meta-analysis. Journal Of Infection, 81(2), pp. 266-275.

Lewandowski, K., et al. (2020). Clostridioides difficile infection in coronavirus disease 2019: an underestimated problem. Pol Arch Intern Med, 131(2), pp. 121-127.

Li, W., et al. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426(6965), pp. 450-454.

Li, Q., et al. (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New England journal of medicine, 382(13), pp. 1199-1207.

Liu, Y. C., Kuo, R. L. & Shih, S. R. (2020). COVID-19: The first documented coronavirus pandemic in history. Biomedical journal, 43(4), pp. 328-333.

Lu, R., et al. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The lancet, 395(10224), pp. 565-574.

Major, J., et al. (2020). Type I and III interferons disrupt lung epithelial repair during recovery from viral infection. Science, 369(6504), pp. 712-717.

Manohar, P., et al. (2020). Secondary bacterial infections in patients with viral pneumonia. Frontiers in medicine, 7, p. 420.

Meijer, E. F. J., et al. (2020). Azole-resistant COVID-19-associated pulmonary aspergillosis in an immunocompetent host: a case report. Journal of Fungi, 6(2), p. 79.

Melenotte, C., et al. (2020). Immune responses during COVID-19 infection. Oncoimmunology, 9(1), p. 1807836, 2020.

Paces, J., et al. (2020). COVID-19 and the immune system. Physiological research, 69(3).

Palamim, C. V. C. & Marson, F. A. L. (2020). Covid-19–the availability of icu beds in brazil during the onset of pandemic. Annals of global health, 86(1).

Permán, J., et al. (2020). Fungal co-infection in COVID-19 patients: Should we be concerned? Revista Iberoamericana de Micologia, 37, pp.41-46.

Qin, C., et al. (2020). Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clinical infectious diseases, 71(15), pp. 762-768.

Rawson, M. T., et al. (2020). Bacterial and Fungal Coinfection in Individuals With Coronavirus: a rapid review to support covid-19 antimicrobial prescribing. Clinical Infectious Diseases, 71(9), pp. 2459-2468.

Rawson, M. T., et al. (2021). Understanding the role of bacterial and fungal infection in COVID-19. Clinical Microbiology and Infection, 27, pp. 9-11.

Rezende, C., et al. (2017). Mecanismos de ação dos antifúngicos. Revista unifev: ciência & tecnologia, 2, p. 316.

Ripa, M., et al. (2021). Secondary infections in patients hospitalized with COVID-19: incidence and predictive factors. Clinical Microbiology and Infection, 27(3), pp. 451-457.

Sainz, J., et al. (2007). Interleukin-10 promoter polymorphism as risk factor to develop invasive pulmonary aspergillosis. Immunology Letters, 109, pp. 76-82.

Salehi, M., et al. (2020). Oropharyngeal candidiasis in hospitalised COVID‐19 patients from Iran: Species identification and antifungal susceptibility pattern. Mycoses, 63(8), pp. 771-778.

Silva, K. M. R., et al. (2021). Implicações do uso de antibióticos durante a pandemia de COVID-19. Research, Society And Development, 10(7), pp. 1-9.

Song, G. & Liang, G. (2020). Fungal Co-infections Associated with Global COVID-19 Pandemic: A Clinical and Diagnostic Perspective from China. Micopatologia, p. 599-606.

Tan, L., et al. (2020). Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal transduction and targeted therapy, 5(1), pp. 1-3.

Tudesq, Jean-Jacques., et al. (2019). Invasive Pulmonary Aspergillosis in Nonimmunocompromised Hosts. Seminars in Respiratory and Critical Care Medicine, pp. 540-547.

Tufan, A., Güler, A. A., Matucci-Cerinic, M. (2020). COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs. Turkish journal of medical sciences, 50(SI-1), pp. 620-632.

Trouillet-Assant, S., et al. (2020). Type I IFN immunoprofiling in COVID-19 patients. Journal of Allergy and Clinical Immunology, 146(1),p p. 206-208.

Wiederhold, N. P. & Verweij, P. E. (2020). Aspergillus fumigatus and pan-azole resistance: who should be concerned?. Current Opinion in Infectious Diseases, 33(4), pp. 290-297.

Yang, L., et al. (2020). COVID-19: immunopathogenesis and Immunotherapeutics. Signal transduction and targeted therapy, 5(128), pp. 1-8.

Yu, X., et al. (2021). Intensive Cytokine induction in Pandemic H1N1 Influenza Virus Infection Accompanied by Robust Production of IL-10 and IL-6. PLOS ONE, p. 9.

Zhang, G., et al. (2020). Clinical features and short-term outcomes of 221 patients with COVID-19 in Wuhan, China. Journal of Clinical Virology, 127, p. 104364.

Downloads

Publicado

23/03/2022

Como Citar

Minante, B. I., Ticotosti, G. G. ., Silva Barros, I. ., Bocalete Balieiro, M., Rodrigues da Silva, M. E., Tefé-Silva, C., & Furlani Zoccal, K. (2022). RESISTÊNCIA ANTIMICROBIANA PÓS-COVID-19: REVISÃO DE LITERATURA. RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 3(3), e331266. https://doi.org/10.47820/recima21.v3i3.1266