O USO DE CÉLULAS-TRONCO NA REGENERAÇÃO PERIODONTAL
DOI:
https://doi.org/10.47820/recima21.v5i12.6040Palavras-chave:
Periodontite, Regeneração, Células-troncoResumo
A periodontite é definida como uma doença infecto-inflamatória crônica associada a um biofilme disbiótico, levando ao desequilíbrio da homeostase, a perda dos tecidos de suporte periodontal e podendo culminar na perda dentária. A frequente presença de defeitos ósseos periodontais leva ao crescente interesse na odontologia pela regeneração periodontal, passando pela busca constante de novos biomateriais e, mais recentemente com a introdução de terapias baseadas em células-tronco. O objetivo desta revisão de literatura é analisar o potencial terapêutico das células tronco mesenquimais na regeneração periodontal, abordando os desafios associados à sua aplicação clínica. As células-tronco mesenquimais (CTMs), particularmente aquelas derivadas do ligamento periodontal, têm demonstrado potencial significativo na regeneração de tecidos periodontais danificados. Estudos indicam que essas células possuem a capacidade de diferenciação em vários tipos celulares, incluindo osteoblastos, cementoblastos e fibroblastos, essenciais para a formação de novo tecido periodontal.
Downloads
Referências
AGGARWAL, S.; PITTENGER, M. F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, v. 105, p. 1815–22, 2005. doi:10.1182/blood-2004-04-1559. DOI: https://doi.org/10.1182/blood-2004-04-1559
ARCURI, L.J.; ABUD, L. G.; DUARTE, F. P. et al. Haploidentical transplantation with post-transplant cyclophosphamide versus unrelated donor hematopoietic stem cell transplantation: A systematic review and meta-analysis. Biol Blood Marrow Transplant, v. 25, n. 12, p. 2422–30, 2019. doi:10.1016/j.bbmt.2019.08.018. DOI: https://doi.org/10.1016/j.bbmt.2019.07.028
CAI, X.; YANG, F.; WALBOOMERS, X. F. et al. Periodontal regeneration via chemoattractive constructs. J Clin Periodontol., v. 45, p. 851–60, 2018. doi:10.1111/jcpe.12935. DOI: https://doi.org/10.1111/jcpe.12928
CHEN, F. M.; GAO, L. N.; TIAN, B. M. et al. Treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: a randomized clinical trial. Stem Cell Res Ther, v. 7, p. 33, 2016. doi:10.1186/s13287-016-0296-8. DOI: https://doi.org/10.1186/s13287-016-0288-1
CHEN, F. M.; SUN, H. H.; LU, H. et al. Stem cell-delivery therapeutics for periodontal tissue regeneration. Biomaterials, v. 33, p. 6320–44, 2012. doi:10.1016/j.biomaterials.2012.05.048. DOI: https://doi.org/10.1016/j.biomaterials.2012.05.048
CHEN, Y.; LIU, H. O potencial de diferenciação de células-tronco mesenquimais gengivais induzidas por meio condicionado de células germinativas dentais apicais. Mol Med Rep., v. 14, p. 3565–72, 2016. doi:10.3892/mmr.2016.5690. DOI: https://doi.org/10.3892/mmr.2016.5690
COSTA, L. A.; EIRO, N.; VACA, A.; VIZOSO, F. J. Towards a new concept of regenerative endodontics based on mesenchymal stem cell-derived secretome products. Bioengineering (Basel)., v. 10, n. 1, p. 4, 2022. doi:10.3390/bioengineering10010004. DOI: https://doi.org/10.3390/bioengineering10010004
CROSSMAN, J.; ELYASI, M.; EL-BIALY, T.; FLORES-MIR, C. Cementum regeneration using stem cells in the dog model: A systematic review. Arch Oral Biol., v. 91, p. 78–90, 2018. doi:10.1016/j.archoralbio.2018.03.015. DOI: https://doi.org/10.1016/j.archoralbio.2018.04.001
DE WERT, G.; MUMMERY, C. Human embryonic stem cells: Research, ethics and policy. Hum Reprod., v. 18, p. 672–82, 2003. doi:10.1093/humrep/deg143. DOI: https://doi.org/10.1093/humrep/deg143
DHOTE, R.; CHARDE, P.; BHONGADE, M.; RAO, J. Stem cells cultured on beta tricalcium phosphate (β-TCP) in combination with recombinant human platelet-derived growth factor-BB (rh-PDGF-BB) for the treatment of human infrabony defects. J Stem Cells., v. 10, p. 243–54, 2015.
DOGAN, A.; OZDEMIR, A.; KUBAR, A.; OYGUR, T. Assessment of periodontal healing by seeding of fibroblast-like cells derived from regenerated periodontal ligament in artificial furcation defects in a dog: a pilot study. Tissue Eng., v. 8, p. 273–82, 2002. doi:10.1089/107632702753725004. DOI: https://doi.org/10.1089/107632702753725030
DOSS, M. X.; SACHINIDIS, A. Current challenges of iPSC-based disease modeling and therapeutic implications. Cells, v. 8, 2019. doi:10.3390/cells8050403. DOI: https://doi.org/10.3390/cells8050403
FEI, X.; JIANG, S.; ZHANG, S. et al. Isolation, culture, and identification of amniotic fluid-derived mesenchymal stem cells. Cell Biochem Biophys, 67, p. 689–94, 2013. doi:10.1007/s12013-013-9564-5. DOI: https://doi.org/10.1007/s12013-013-9558-z
FERRAROTTI, F.; ROMANO, F.; GAMBA, M. N. et al. Human intrabony defect regeneration with micrografts containing dental pulp stem cells: A randomized controlled clinical trial. J Clin Periodontol., v. 45, p. 841–50, 2018. doi:10.1111/jcpe.12934. DOI: https://doi.org/10.1111/jcpe.12931
FU, X.; XU, Y. Challenges to the clinical application of pluripotent stem cells: Towards genomic and functional stability. Genome Med., v. 4, p. 55, 2012. doi:10.1186/gm367. DOI: https://doi.org/10.1186/gm354
GARTNER, S.; KAPLAN, H. S. Long-term culture of human bone marrow cells. Proc Natl Acad Sci U S A., v. 77, p. 4756–9, 1980. doi:10.1073/pnas.77.8.4756. DOI: https://doi.org/10.1073/pnas.77.8.4756
GOULD, T. R.; MELCHER, A. H.; BRUNETTE, D. M. Migration and division of progenitor cell populations in periodontal ligament after wounding. J Periodont Res., v. 15, p. 20–42, 1980. doi:10.1111/j.1600-0765.1980.tb00297.x. DOI: https://doi.org/10.1111/j.1600-0765.1980.tb00258.x
GRONTHOS, S.; MANKANI, M.; BRAHIM, J.; ROBEY, P. G.; SHI, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A., v. 97, p. 13625–30, 2000. doi:10.1073/pnas.240309797. DOI: https://doi.org/10.1073/pnas.240309797
HA, D. H.; KIM, H.; LEE, J. et al. Mesenchymal stem/stromal cell-derived exosomes for immunomodulatory therapeutics and skin regeneration. Cells, v. 9, 2020. doi:10.3390/cells9112240. DOI: https://doi.org/10.3390/cells9051157
HAN, J.; MENICANIN, D.; GRONTHOS, S. et al. Stem cells, tissue engineering and periodontal regeneration. Aust Dent J., v. 59, p. 117–30, 2014. doi:10.1111/adj.12114. DOI: https://doi.org/10.1111/adj.12100
HE, W.; GOODKIND, A. L.; KOWALECZKO, M. et al. Cancer treatment evolution from traditional methods to stem cells and gene therapy. Curr Gene Ther., v. 22, n. 5, p. 368–85, 2022. doi:10.2174/1566523222666220420124039. DOI: https://doi.org/10.2174/1566523221666211119110755
HERNÁNDEZ-MONJARAZ, B.; SANTIAGO-OSORIO, E.; LEDESMA-MARTÍNEZ, E. et al. Retrieval of a periodontally compromised tooth by allogeneic grafting of mesenchymal stem cells from dental pulp: A case report. J Int Med Res., v. 46, p. 2983–93, 2018. doi:10.1177/0300060518779070. DOI: https://doi.org/10.1177/0300060518773244
HUANG, G. T. J.; GRONTHOS, S.; SHI, S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: Their biology and role in regenerative medicine. J Dent Res., v. 88, p. 792–806, 2009. doi:10.1177/0022034509340867. DOI: https://doi.org/10.1177/0022034509340867
IVANOVSKI, S.; VAQUETTE, C.; GRONTHOS, S. et al. Multiphasic scaffolds for periodontal tissue engineering. J Dent Res., v. 93, p. 1212–21, 2014. doi:10.1177/0022034514547278. DOI: https://doi.org/10.1177/0022034514544301
JIANG, J.; WU, X.; LIN, M. et al. Application of autologous periosteal cells for the regeneration of class III furcation defects in Beagle dogs. Cytotechnology., v. 62, p. 235–43, 2010. doi:10.1007/s10616-010-9262-y. DOI: https://doi.org/10.1007/s10616-010-9284-y
KIM, S. G. A cell-based approach to dental pulp regeneration using mesenchymal stem cells: A scoping review. Int J Mol Sci., v. 22, n. 9, p. 4357, 2021. doi:10.3390/ijms22094357. DOI: https://doi.org/10.3390/ijms22094357
LEITE SEGUNDO, A. V.; VASCONCELOS, B. C. do E. Células-tronco e engenharia tecidual: perspectivas de aplicação em odontologia. Rev Ciências Médicas., v. 16, 2007.
LI, X.; HE, X. T.; YIN, Y. et al. Administration of signalling molecules dictates stem cell homing for in situ regeneration. J Cell Mol Med., v. 21, p. 3162–77, 2017. doi:10.1111/jcmm.13223. DOI: https://doi.org/10.1111/jcmm.13286
LØVSCHALL, H.; ARENHOLT-BINDSLEV, D.; CLAUSEN, P. P.; KARRING, T. Activation of the Notch signaling pathway in response to pulp capping of rat molars. Eur J Oral Sci, v. 113, n. 4, p. 312–7, 2005. doi: 10.1111/j.1600-0722.2005.00221.x. DOI: https://doi.org/10.1111/j.1600-0722.2005.00221.x
MIURA, M.; GRONTHOS, S.; ZHAO, M.; LU, B.; FISHER, L. W.; ROBEY, P. G.; SHI, S. SHED: Stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA., v. 100, n. 10, p. 5807–12, 2003. doi: 10.1073/pnas.0937635100. DOI: https://doi.org/10.1073/pnas.0937635100
MROZIK, K. M.; WADA, N.; MARINO, V.; RICHTER, W.; SHI, S.; WHEELER, D. L.; GRONTHOS, S.; BARTOLD, P. M. Regeneration of periodontal tissues using allogeneic periodontal ligament stem cells in an ovine model. Regen Med., v. 8, n. 6, p. 711–23, 2013. doi: 10.2217/rme.13.69. DOI: https://doi.org/10.2217/rme.13.66
NAGATA, M.; AKAMINE, Y.; KURASHINA, K. Meio condicionado de células-tronco do ligamento periodontal melhora a regeneração periodontal. Tissue Eng Part A., v. 23, n. 9–10, p. 367–77, 2017. doi: 10.1089/ten.TEA.2016.0252.
NÚÑEZ, J.; SANZ-BLASCO, S.; VIGNOLETTI, F.; VALLÉS, C.; FIGUERO, E.; SANZ, M. Periodontal regeneration: stem cells and platelet-rich plasma: from basic research to the clinic and future development of cell transplantation therapy for tissue regeneration. Int J Dent., v. 2012, p. 307024, 2012. doi: 10.1155/2012/307024. DOI: https://doi.org/10.1155/2012/307024
PAPAPANOU, P. N.; SANZ, M.; BUDUNELI, N.; DIETRICH, T.; FERES, M.; FINE, D. H. et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin Periodontol., v. 45, Suppl 20, S170, 2018. doi: 10.1111/jcpe.12946. DOI: https://doi.org/10.1111/jcpe.12946
PARK, C. H.; KIM, K. H.; LEE, Y. M.; SEOL, Y. J. Advanced engineering strategies for periodontal complex regeneration. Materials (Basel), v. 9, n. 7, p. 57, 2016. doi: 10.3390/ma907057. DOI: https://doi.org/10.3390/ma9010057
PARK, J. M.; KIM, J.; KIM, M. Y.; KIM, S. W. Effects of mesenchymal stem cell on dopaminergic neurons, motor and memory functions in animal models of Parkinson's disease: a systematic review and meta-analysis. Neural Regen Res., v. 19, n. 7, p. 1584–92, 2024. doi: 10.4103/1673-5374.371482. DOI: https://doi.org/10.4103/1673-5374.387976
PENG, Y.; KE, M.; XUE, W.; NI, Y.; HE, C.; DENG, Z. Donor-derived mesenchymal stem cells combined with low-dose tacrolimus prevent acute rejection after renal transplantation: A clinical pilot study. Transplantation., v. 95, n. 2, p. 161–8, 2013. doi: 10.1097/TP.0b013e318271caa2. DOI: https://doi.org/10.1097/TP.0b013e3182754c53
PIRES, I. G.; BATISTA, N. F.; RODRIGUES, R. C.; DE SOUZA, A. G.; MARTINS, A. V.; RODRIGUES, L. G. Clinical efficacy of stem-cell therapy on diabetes mellitus: A systematic review and meta-analysis. Transpl Immunol., v. 75, p. 101740, 2022;. doi: 10.1016/j.trim.2022.101740. DOI: https://doi.org/10.1016/j.trim.2022.101740
PREISIG, E.; SCHROEDER, H. E. Long‐term culture of human periodontal ligament cells with autologous root discs. J Periodontal Res., v. 23, n. 3, p. 211–6, 1988. doi: 10.1111/j.1600-0765.1988.tb01547.x. DOI: https://doi.org/10.1111/j.1600-0765.1988.tb01360.x
QIU, J.; ZHOU, J.; WANG, J.; CHEN, L.; TAN, J.; ZHENG, L. et al. Improvement of periodontal tissue regeneration by conditioned medium of mesenchymal stem cells derived from gingiva or periodontal ligament: a comparative study in rats. Stem Cell Res Ther., v. 11, n. 1, p. 42, 2020. doi: 10.1186/s13287-020-1551-0. DOI: https://doi.org/10.1186/s13287-019-1546-9
QUINLAN, A. R.; BOLAND, M. J.; BALL, M. P.; MELTON, C.; VANDENBERG, D. J.; ILIFF, B. W. et al. Genome sequencing of mouse induced pluripotent stem cells reveals retroelement stability and infrequent DNA rearrangement during reprogramming. Cell Stem Cell., v. 9, n. 4, p. 366–73, 2011. doi: 10.1016/j.stem.2011.09.008. DOI: https://doi.org/10.1016/j.stem.2011.07.018
ROMANOV, Y. A.; SVINTSITSKAYA, V. A.; SMIRNOV, V. N. Searching for alternative sources of postnatal human mesenchymal stem cells: Candidate MSC-like cells from umbilical cord. Stem Cells., v. 21, n. 1, p. 105–10, 2003. doi: 10.1634/stemcells.21-1-105. DOI: https://doi.org/10.1634/stemcells.21-1-105
SALARI SEDIGH, H.; SAFFARPOUR, A.; JAMSHIDI, S.; ASHOURI, M.; NASSIRI, S. M.; DEHGHAN, M. M.; RANJBAR, E.; SHAFIEIAN, R. In vitro investigation of canine periodontal ligament-derived mesenchymal stem cells: A possibility of promising tool for periodontal regeneration. J Oral Biol Craniofac Res., v. 13, p. 403–411, 2023. doi: 10.1016/j.jobcr.2023.02.005 DOI: https://doi.org/10.1016/j.jobcr.2023.03.010
SÁNCHEZ, N.; MATOS, S.; NUNES, R.; CARDOSO, J.; RIBEIRO, F.; MARTINS, T. Periodontal regeneration using a xenogeneic bone substitute seeded with autologous periodontal ligament-derived mesenchymal stem cells: A 12-month quasi-randomized controlled pilot clinical trial. J Clin Periodontol., v. 47, p. 1391–1402, 2020. doi: 10.1111/jcpe.13382 DOI: https://doi.org/10.1111/jcpe.13368
SANTOS, N. C. C. D.; COTRIM, K. C.; ACHÔA, G. L.; KALIL, E. C.; KANTARCI, A.; BUENO, D. F. The use of mesenchymal stromal/stem cells (MSC) for periodontal and peri-implant regeneration: Scoping review. Braz Dent J., v. 25, p. 35, 2024. DOI: https://doi.org/10.1590/0103-6440202406134
SEO, B. M.; MIURA, M.; GRONTHOS, S.; BARTOLD, P. M.; BATOULI, S.; BRAHIM, J.; YOUNG, M.; GEHRON, R. P.; SHI, S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet., v. 364, p. 149–155, 2004. doi: 10.1016/S0140-6736(04)16627-0 DOI: https://doi.org/10.1016/S0140-6736(04)16627-0
SHARKIS, S. J.; JONES, R. J.; CIVIN, C.; JANG, Y. Y. Pluripotent stem cell-based cancer therapy: Promise and challenges. Sci Transl Med, v. 4, p. 127ps9, 2012. doi: 10.1126/scitranslmed.3003623 DOI: https://doi.org/10.1126/scitranslmed.3003920
TAKAHASHI, K.; TANABE, K.; OHNUKI, M.; NARITA, M.; ICHISAKA, T.; TOMODA, K.; YAMANAKA, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell., v. 131, p. 861–872, 2007. doi: 10.1016/j.cell.2007.11.019 DOI: https://doi.org/10.1016/j.cell.2007.11.019
TAKAHASHI, K.; YAMANAKA, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell., v. 126, p. 663–676, 2006. doi: 10.1016/j.cell.2006.07.024 DOI: https://doi.org/10.1016/j.cell.2006.07.024
THESLEFF, I.; NIEMINEN, P. Tooth morphogenesis and cell differentiation. Curr Opin Cell Biol., v. 8, p. 844–850, 1996. doi: 10.1016/S0955-0674(96)80133-3 DOI: https://doi.org/10.1016/S0955-0674(96)80086-X
TSUMANUMA, Y, IWATA, T, WASHIO, K, YOSHIDA, T, YAMADA, A, TAKAYAMA, S, TSUJI, Y.; SHIBATA, Y.; BABA, S.; ANDO, T.; YAMATO, M.; OKANO, T.; IZUMI, Y. Comparison of different tissue-derived stem cell sheets for periodontal regeneration in a canine 1-wall defect model. Biomaterials, v. 32, p. 5819–5825, 2011. doi: 10.1016/j.biomaterials.2011.04.056 DOI: https://doi.org/10.1016/j.biomaterials.2011.04.071
UCCELLI, A.; MORETTA, L.; PISTOIA, V. Mesenchymal stem cells in health and disease. Nat Rev Immunol., v. 8, p. 726–736, 2008. doi: 10.1038/nri2395 DOI: https://doi.org/10.1038/nri2395
WAGNER, J.; KEAN, T. J.; YOUNG, R. G.; DENNIS, J. E.; CAPLAN, A. I. Optimizing mesenchymal stem cell-based therapeutics. Curr Opin Biotechnol., v. 20, p. 531–536, 2009. doi: 10.1016/j.copbio.2009.08.009 DOI: https://doi.org/10.1016/j.copbio.2009.08.009
WANG, W.; YUAN, C.; LIU, Z.; GENG, T.; LI, X.; WEI, L.; NIU, W.; WANG, P. Characteristic comparison between canine and human dental mesenchymal stem cells for periodontal regeneration research in preclinical animal studies. Tissue Cell., v. 67, p. 101405, 2020. doi: 10.1016/j.tice.2020.101405 DOI: https://doi.org/10.1016/j.tice.2020.101405
YAMANAKA, S. Pluripotent stem cell-based cell therapy: Promise and challenges. Cell Stem Cell, v. 27, p. 523–531, 2020. doi: 10.1016/j.stem.2020.09.011 DOI: https://doi.org/10.1016/j.stem.2020.09.014
ZUK, P. A.; ZHU, M.; ASHJIAN, P.; DE UGARTE, D. A.; HUANG, J. I.; MIZUNO, H.; ALFONSO, Z. C.; FRASER, J. K.; BENHAIM, P.; HEDRICK, M. H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng., v. 7, p. 211–228, 2001. doi: 10.1089/107632701300062859 DOI: https://doi.org/10.1089/107632701300062859
Downloads
Publicado
Licença
Copyright (c) 2024 RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECIMA21, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECIMA21 apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.