CONTROLE DE COMANDO DE VÁLVULAS EM MOTORES DE IGNIÇÃO POR CENTELHA: REVISÃO SISTEMÁTICA DA LITERATURA

Autores

DOI:

https://doi.org/10.47820/recima21.v6i2.6124

Palavras-chave:

Controle de comando de válvulas, Motor de ignição por centelha, Ciclo Otto, Ciclo Miller

Resumo

O texto discute as diferenças entre os ciclos Otto e Miller em motores de combustão interna, destacando como o ciclo Miller, ao retardar o fechamento das válvulas de admissão, melhora a eficiência térmica ao permitir um fluxo reverso que reduz o trabalho de compressão. O desenvolvimento de tecnologias com controle eletrônico tem sido crucial para aumentar a eficiência energética e reduzir emissões de gases de efeito estufa, especialmente em setores como mobilidade e indústria. A revisão sistemática proposta visa analisar as tecnologias aplicadas nos motores Otto e Miller, identificando suas vantagens e desvantagens, e acompanhando a evolução das máquinas térmicas. O trabalho busca alinhar-se com os Objetivos de Desenvolvimento Sustentável da ONU, promovendo motores mais eficientes e contribuindo para a redução das emissões. O foco principal é catalogar as inovações em controle de válvulas em motores de ignição por centelha, avaliando suas aplicações e impactos.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Layra Beatriz da Silva Carvalho

    Universidade Estadual Paulista - UNESP.

  • Gabriel Coelho Rodrigues Alvares

    Universidade Estadual Paulista - UNESP.

  • Alex Pereira Da Cunha

    Universidade Estadual Paulista - UNESP.

  • Masoud Ghanbari Kashani

    Universidade Estadual Paulista - UNESP.

  • Paulo Sergio Barbosa dos Santos

    Universidade Estadual Paulista - UNESP.

  • Isabele Oliveira De Paula

    Universidade Estadual Paulista - UNESP.

Referências

BABAYEV, Rafig; IM, Hong G.; ANDERSSON, Arne; JOHANSSON, Bengt. Hydrogen double compression-expansion engine (H2DCEE): A sustainable internal combustion engine with 60%+ brake thermal efficiency potential at 45 bar BMEP. Energy Conversion and Management, v. 264, p. 115698, 15 jul. 2022. Disponível em: https://doi.org/10.1016/j.enconman.2022.115698. DOI: https://doi.org/10.1016/j.enconman.2022.115698

BAÊTA, José Guilherme Coelho; SILVA, Thiago R. V.; NETTO, Nilton A. D.; MALAQUIAS, Augusto C. T.; RODRIGUES FILHO, Fernando Antonio; PONTOPPIDAN, Michael. Full spark authority in a highly boosted ethanol DISI prototype engine. Applied Thermal Engineering, v. 139, p. 35–46, 5 jul. 2018. Disponível em: https://doi.org/10.1016/j.applthermaleng.2018.04.112. DOI: https://doi.org/10.1016/j.applthermaleng.2018.04.112

CAO, Jiale; LI, Tie; HUANG, Shuai; CHEN, Run; LI, Shiyan; KUANG, Min; YANG, Rundai; HUANG, Yating. Co-optimization of miller degree and geometric compression ratio of a large-bore natural gas generator engine with novel Knock models and machine learning. Applied Energy, v. 352, 15 dez. 2023, p. 121957. Disponível em: https://doi.org/10.1016/j.apenergy.2023.121957. DOI: https://doi.org/10.1016/j.apenergy.2023.121957

CHEN, Bin; ZHANG, Li; HAN, Jinlin; ZHANG, Qing. A combination of electric supercharger and Miller Cycle in a gasoline engine to improve thermal efficiency without performance degradation. Case Studies in Thermal Engineering, v. 14, p. 100429, 1 set. 2019. Disponível em: https://doi.org/10.1016/j.csite.2019.100429. DOI: https://doi.org/10.1016/j.csite.2019.100429

CHENGQIAN, Li; WANG, Yaodong; JIA, Boru; ROSKILLY, Tony. Application of Miller Cycle with turbocharger and ethanol to reduce NOx and particulates emissions from diesel engine – a numerical approach with model validations. Applied Thermal Engineering, v. 150, 5 mar. 2019. Disponível em: https://doi.org/10.1016/j.applthermaleng.2019.01.056. DOI: https://doi.org/10.1016/j.applthermaleng.2019.01.056

CONFORTO, E. C.; AMARAL, D. C.; SILVA, S. L. Roteiro para revisão bibliográfica sistemática: aplicação no desenvolvimento de produtos e gerenciamento de projetos. 8º Congresso Brasileiro de Gestão de Desenvolvimento de Produto - CBGDP 2011, 2011. p. 12.

DEMIR, Usame; COSKUN, Gokhan; SOYHAN, Hakan S.; TURKCAN, Ali; ALPTEKIN, Ertan; CANAKCI, Mustafa. Effects of variable valve timing on the air flow parameters in an electromechanical valve mechanism – A cfd study. Fuel, v. 308, p. 121956, 15 jan. 2022. Disponível em: https://doi.org/10.1016/j.fuel.2021.121956. DOI: https://doi.org/10.1016/j.fuel.2021.121956

DIESELNET. Motores de ciclo Miller: Guia de tecnologia Dieselnet. [S. l.]: Dieselnet, dez. 2019. Disponível em: https ://dieselnet .com /tech /engine_miller -cycle .php .

DOGRU, B.; LOT, R.; RANGA DINESH, K. K. J. Valve timing optimisation of a spark ignition engine with skip cycle strategy. Energy Conversion and Management, v. 173, p. 95–112, 1 out. 2018. Disponível em: https://doi.org/10.1016/j.enconman.2018.07.064. DOI: https://doi.org/10.1016/j.enconman.2018.07.064

GARCÍA, Antonio; MONSALVE-SERRANO, Javier; MARTÍNEZ-BOGGIO, Santiago; WITTEK, Karsten. Potential of hybrid powertrains in a variable compression ratio downsized turbocharged VVA Spark Ignition engine. Energy, v. 195, p. 117039, 15 mar. 2020. Disponível em: https://doi.org/10.1016/j.energy.2020.117039. DOI: https://doi.org/10.1016/j.energy.2020.117039

HASAN, Ahmad O.; ELGHAWI, U. M.; AL-MUHTASEB, Ala’a H.; ABU-JRAI, A.; AL-RAWASHDEH, Hany; TSOLAKIS, A. Influence of composite after-treatment catalyst on particle-bound polycyclic aromatic hydrocarbons–vapor-phase emitted from modern advanced GDI engines. Fuel, v. 222, p. 424–33, jun. 2018. Disponível em: https://doi.org/10.1016/j.fuel.2018.02.114. DOI: https://doi.org/10.1016/j.fuel.2018.02.114

HE, Yongsheng; LIU, Jim; SUN, David; ZHU, Bin. Development of an aggressive Miller Cycle engine with extended Late-Intake-Valve-Closing and a two-stage turbocharger. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, v. 233, n. 2, p. 413–26, 1 fev. 2019. Disponível em: https://doi.org/10.1177/0954407017745220. DOI: https://doi.org/10.1177/0954407017745220

JUNG, Dongwon; LEE, Byeongseok; SON, Jinwook; WOO, Soohyung; KIM, Youngnam. Development of Gasoline Direct Injection Engine for Improving Brake Thermal Efficiency Over 44%. Journal of Engineering for Gas Turbines and Power, v. 142, n. 101005, 24 set. 2020. Disponível em: https://doi.org/10.1115/1.4048152. DOI: https://doi.org/10.1115/1.4048152

LAPES - LABORATÓRIO DE PESQUISA EM ENGENHARIA DE SOFTWARE. Tools. [S. l.]: Lapes, 2025. Disponível em: https://www.lapes.ufscar.br/resources/tools.

LI, Qingyu; LIU, Jingping; FU, Jianqin; ZHOU, Xianjie; LIAO, Cheng. Comparative study on the pumping losses between continuous variable valve lift (CVVL) engine and variable valve timing (VVT) engine. Applied Thermal Engineering, v. 137, p. 710–20, 5 jun. 2018a. Disponível em: https://doi.org/10.1016/j.applthermaleng.2018.04.017. DOI: https://doi.org/10.1016/j.applthermaleng.2018.04.017

LI, Yangtao; KHAJEPOUR, Amir; DEVAUD, Cécile. Realization of variable Otto-Atkinson cycle using variable timing hydraulic actuated valve train for performance and efficiency improvements in unthrottled gasoline engines. Applied Energy, v. 222, p. 199–215, 15 jul. 2018b. Disponível em: https://doi.org/10.1016/j.apenergy.2018.04.012. DOI: https://doi.org/10.1016/j.apenergy.2018.04.012

LIANG, Jichao; ZHANG, Quanchang; CHEN, Zheng; QIAO, Junhao; JIA, Dongdong; WANG, Rumin; MA, Qixin; SHEN, Dazi. Experimental study on combustion and emission characteristics of LIVC Miller cycle with asynchronous intake valves. Fuel, v. 329, p. 125377, 1 dez. 2022. Disponível em: https://doi.org/10.1016/j.fuel.2022.125377. DOI: https://doi.org/10.1016/j.fuel.2022.125377

MILLER, Atkinson; ATKINSON; BUDACK. Conhece os ciclos de combustão? Revista Turbo, 25 jun. 2024. Disponível em: https ://www .turbo .pt /ciclo -miller -atkinson -budack /#:~:text =Estes %20motores %20caraterizam %2Dse %20por ,efici %C3 %AAncia %20em %20detrimento %20da %20pot %C3 %AAncia .

MOHAMMED, Arshed Abdulhamed. Performance analysis of variable valve timing engine to detect some engine faults by using Hilbert Huang transform. Applied Acoustics, v. 194, p. 108775, 15 jun. 2022. Disponível em: https://doi.org/10.1016/j.apacoust.2022.108775. DOI: https://doi.org/10.1016/j.apacoust.2022.108775

PABOCAR, AMP. O que é motor do ciclo Otto: Auto Mecânica e Elétrica. [S. l.]: Pabocar, maio 2020. Disponível em: https ://pabocar .com .br /glossario /o -que -e -motor -de -ciclo -otto /#:~:text =O %20motor %20de %20ciclo %20Otto %20 %C3 %A9 %20conhecido %20por %20sua %20alta ,um %20melhor %20aproveitamento %20do %20combust %C3 %ADvel .

PAN, Junjie; KHAJEPOUR, Amir; LI, Yangtao; YANG, Jing; LIU, Weiqiang. Performance and power consumption optimization of a hydraulic variable valve actuation system. Mechatronics, v. 73, p. 102479, 1 fev. 2021. Disponível em: https://doi.org/10.1016/j.mechatronics.2020.102479. DOI: https://doi.org/10.1016/j.mechatronics.2020.102479

PATRA, Arijit; MAHAPATRA, Ananya; BAGAL, Dilip Kumar; BARUA, Abhishek; JEET, Siddharth; PATNAIK, Dulu. Comparative evaluation of 4-cylinder CI engine camshaft based on FEA using different composition of metal matrix composite. 2nd International Conference on Functional Material, Manufacturing and Performances (ICFMMP-2021), v. 50, p. 692–99, 1 jan. 2022. Disponível em: https://doi.org/10.1016/j.matpr.2021.04.477. DOI: https://doi.org/10.1016/j.matpr.2021.04.477

PEI, Yiqiang; ZHANG, Qirui; PENG, Zhong; AN, Yanzhao; SHI, Hao; QIN, Jing; ZHANG, Bin; ZHANG, Zhiyong; GAO, Dingwei. Thermal efficiency improvement of lean burn high compression ratio engine coupled with water direct injection. Energy Conversion and Management, v. 251, p. 114969, 1 jan. 2022. Disponível em: https://doi.org/10.1016/j.enconman.2021.114969. DOI: https://doi.org/10.1016/j.enconman.2021.114969

PERCEAU, Marcellin; GUIBERT, Philippe; STÉPHANE, Guilain. Zero-dimensional turbulence modeling of a spark ignition engine in a Miller cycle «Dethrottling» approach using a variable valve timing system. Applied Thermal Engineering, v. 199, p. 117535, 25 nov. 2021. Disponível em: https://doi.org/10.1016/j.applthermaleng.2021.117535. DOI: https://doi.org/10.1016/j.applthermaleng.2021.117535

PUJARI, Prashant Chandra; JAIN, Amit; NATH, Devang S.; KUMAR, Naveen. Designing, modeling, and structural analysis of a newly designed double lobe camshaft for a two-stroke compressed air engine. 3rd International Conference on Advances in Mechanical Engineering and Nanotechnology, v. 47, p. 3392–99, 1 jan. 2021. Disponível em: https://doi.org/10.1016/j.matpr.2021.07.277. DOI: https://doi.org/10.1016/j.matpr.2021.07.277

QIAO, Junhao; LIU, Jingping; LIANG, Jichao; JIA, Dongdong; WANG, Rumin; SHEN, Dazi; DUAN, Xiongbo. Experimental investigation the effects of Miller cycle coupled with asynchronous intake valves on cycle-to-cycle variations and performance of the SI engine. Energy, v. 263, p. 125868, 15 jan. 2023. Disponível em: https://doi.org/10.1016/j.energy.2022.125868. DOI: https://doi.org/10.1016/j.energy.2022.125868

RUEDA-VÁIZQUEZ, J. M.; SERRANO, J.; JIMÉNEZ-ESPADAFOR, F. J.; DORADO, M. P. Experimental analysis of the effect of hydrogen as the main fuel on the performance and emissions of a modified compression ignition engine with water injection and compression ratio reduction. Applied Thermal Engineering, v. 238, p. 121933, 1 fev. 2024. Disponível em: https://doi.org/10.1016/j.applthermaleng.2023.121933. DOI: https://doi.org/10.1016/j.applthermaleng.2023.121933

SHEN, Kai; XU, Zishun; CHEN, Hong; ZHANG, Zhendong. Investigation on the EGR effect to further improve fuel economy and emissions effect of Miller cycle turbocharged engine. Energy, v. 215, p. 119116, 15 jan. 2021. Disponível em: https://doi.org/10.1016/j.energy.2020.119116. DOI: https://doi.org/10.1016/j.energy.2020.119116

TEODOSIO, Luigi; PIRRELLO, Dino; BERNI, Fabio; DE BELLIS, Vincenzo; LANZAFAME, Rosario; D’ADAMO, Alessandro. Impact of intake valve strategies on fuel consumption and knock tendency of a spark ignition engine. Applied Energy, v. 216, p. 91–104, 15 abr. 2018. Disponível em: https://doi.org/10.1016/j.apenergy.2018.02.032. DOI: https://doi.org/10.1016/j.apenergy.2018.02.032

TRIPATHY, Srinibas; DAS, Abhimanyu; SRIVASTAVA, Dhananjay Kumar. Electro-pneumatic variable valve actuation system for camless engine: Part II-fuel consumption improvement through un-throttled operation. Energy, v. 193, p. 116741, 15 fev. 2020. Disponível em: https://doi.org/10.1016/j.energy.2019.116741. DOI: https://doi.org/10.1016/j.energy.2019.116741

WEBSTER, J.; WATSON, J. T. Analyzing the past to prepare for the future: writing a literature review. MIS Quarterly & The Society for Information Management, v. 26, n. 2, p. 13–23, 2002.

WITTEK, Karsten; GEIGER, Frank; ANDERT, Jakob; MARTINS, Mario; COGO, Vitor; LANZANOVA, Thompson. Experimental investigation of a variable compression ratio system applied to a gasoline passenger car engine. Energy Conversion and Management, v. 183, p. 753–63, 1 mar. 2019. Disponível em: https://doi.org/10.1016/j.enconman.2019.01.037. DOI: https://doi.org/10.1016/j.enconman.2019.01.037

XIN, Gu; JI, Changwei; WANG, Shuofeng; HONG, Chen; MENG, Hao; YANG, Jinxin; SU, Fangxu. Experimental study of the effect of variable valve timing on hydrogen-enriched ammonia engine. Fuel, v. 344, p. 128131, 15 jul. 2023. Disponível em: https://doi.org/10.1016/j.fuel.2023.128131. DOI: https://doi.org/10.1016/j.fuel.2023.128131

YANG, Xiaofeng; LIANG, Kun. Measurement and modelling of a linear electromagnetic actuator driven camless valve train for spark ignition IC engines under full load condition. Mechatronics, v. 77, p. 102604, 1 ago. 2021. Disponível em: https://doi.org/10.1016/j.mechatronics.2021.102604. DOI: https://doi.org/10.1016/j.mechatronics.2021.102604

YUAN, Zhipeng; FU, Jianqin; LIU, Qi; MA, Yinjie; ZHAN, Zhangsong. Quantitative study on influence factors of power performance of variable valve timing (VVT) engines and correction of its governing equation. Energy, v. 157, p. 314–26, 15 ago. 2018. Disponível em: https://doi.org/10.1016/j.energy.2018.05.135. DOI: https://doi.org/10.1016/j.energy.2018.05.135

ZHANG, Beidong; CHEN, Yexin; JIANG, Yankun; LU, Wei; LIU, Wangbin. Effect of compression ratio and Miller cycle on performance of methanol engine under medium and low loads. Fuel, v. 351, p. 128985., 1 nov. 2023; Disponível em: https://doi.org/10.1016/j.fuel.2023.128985. DOI: https://doi.org/10.1016/j.fuel.2023.128985

ZHOU, Xianjie; CHEN, Zheng; ZOU, Peng; LIU, Jingping; DUAN, Xiongbo; QIN, Tao; ZHANG, Shiheng; SHEN, Dazi. Combustion and energy balance analysis of an unthrottled gasoline engine equipped with innovative variable valvetrain. Applied Energy, v. 268, p. 115051, 15 jun. 2020. Disponível em: https://doi.org/10.1016/j.apenergy.2020.115051. DOI: https://doi.org/10.1016/j.apenergy.2020.115051

ZHOU, You; HONG, Wei; XIE, Fangxi; SU, Yan; WANG, Zhongshu; LIU, Yu. Effects of different valve lift adjustment strategies on stoichiometric combustion and lean burn of engine fueled with methanol/gasoline blending. Fuel, v. 339, p. 126934, 1 maio 2023. Disponível em: https://doi.org/10.1016/j.fuel.2022.126934. DOI: https://doi.org/10.1016/j.fuel.2022.126934

ZOU, Peng; LIU, Jingping; ZHOU, Xianjie; CHEN, Zheng; LUO, Baojun; SHEN, Dazi; DUAN, Xiongbo; FU, Jianqin. Effect of a novel mechanical CVVL system on economic performance of a turbocharged spark-ignition engine fuelled with gasoline and ethanol blend. Fuel, v. 263, p. 116697, 1 mar. 2020. Disponível em: https://doi.org/10.1016/j.fuel.2019.116697. DOI: https://doi.org/10.1016/j.fuel.2019.116697

Downloads

Publicado

14/02/2025

Como Citar

CONTROLE DE COMANDO DE VÁLVULAS EM MOTORES DE IGNIÇÃO POR CENTELHA: REVISÃO SISTEMÁTICA DA LITERATURA. (2025). RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 6(2), e626124. https://doi.org/10.47820/recima21.v6i2.6124