MACHINE LEARNING ALGORITHMS IN AGRICULTURE: A LITERATURE REVIEW ON CLIMATE AND PRICE PREDICTION, PEST AND DISEASE DETECTION, AND PRODUCTION MONITORING

Autores

DOI:

https://doi.org/10.47820/recima21.v6i2.6211

Palavras-chave:

Agricultura, Algoritmo, Aprendizado de máquina, Floresta aleatória, IA, Previsão, Seca

Resumo

The demand for food is growing every year and demands more significant technology applications in the field Furthermore, due to food production, pests and climate change incidents are a real-time challenge for farmers. Due to the growing need to apply algorithms in the field, we investigate the algorithms most cited, used, and ongoing projects in the last three years, from 2019 to 2021 Therefore, we evaluated articles that focus was mainly on supervised learning algorithms This literature review presents an overview of algorithms usage in agriculture. A total of 81 articles were analysed. Our contributions as a) an analysis of the state-of-the-art on applying algorithms to various agricultural functions and b) a taxonomy to help researchers, governments, and farmers choose these algorithms. This article adds discoveries about the application of algorithms in crops, machinery, and processes and points out new lines of research.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Emiliano Soares Monteiro

    UNEMAT

  • Rodrigo da Rosa Righi

    Professor and researcher at University of Vale do Rio dos Sinos (Unisinos), Brazil. Post-doctoral studies at KAIST - Korean Advanced Institute of Science and Technology, South Korea, under the following topics: RFID and cloud computing. MS and PhD degrees in Computer Science from the Federal University of Rio Grande do Sul, Brazil. Performed a stage at Tecnische Universitaet Berlin, Germany. Member of both IEEE Computer Society and ACM.

  • Antônio Marcos Alberti

    Associate Professor in Software Engineering at the School of Computer Science, University of Leeds, UK. PhD at the State University of Campinas (Unicamp), Brazil, Researcher at the Electronics and Telecommunications Research Institute (ETRI), South Korea. 

  • Sandro José Rigo

    Professor/Researcher in the Applied Computing Graduate Program Program – UNISINOS; Head of the Undergraduate Course in Computer Science in UNISINOS; Head of the Graduate Degree Program in Applied Computer Science in UNISINOS; Dean of the UNISINOS Polytechnic School. BSc in Computer Science at Pontifícia Universidade Católica do Rio Grande do Sul PUCRS; MSc in Computer Science at Universidade Federal do Rio Grande do Sul UFRGS; Ph.D. in Computer Science at Universidade Federal do Rio Grande do Sul UFRGS. Professor and Researcher at UNISINOS University. Scholarship for Productivity in Technological Development and Innovative Extension (DT-2) of the National Council for Scientific and Technological Development (CNPq). Main research areas: Artificial Intelligence, Semantic Web, Natural Language Processing, Robotic, Distance Education. Doctoral thesis in progress: 2; Software registered (INPI – Instituto Nacional de Propriedade Intelectual / National Institute of Intelectual Property).

  • Jorge Luis Victoria Barbosa

    Graduação em Tecnologia em Processamento de Dados e Engenharia Elétrica pela Universidade Católica de Pelotas (UCPel). Especialização em Engenharia de Software (UCPel). Mestrado e doutorado em ciência da computação na Universidade Federal do Rio Grande do Sul (UFRGS). Pós-doutorado na Sungkyunkwan University (SKKU, Suwon, Coréia do Sul). Pós-doutorado na University of California Irvine (UCI, Irvine, USA) através de uma bolsa do Programa CAPES/PRINT (professor visitante no Exterior Sênior). Professor Titular II na Universidade do Vale do Rio dos Sinos (Unisinos). Professor no Programa de Pós-graduação em Computação Aplicada (PPGCA) e no Programa de Pós-Graduação em Engenharia Elétrica (PPGEL). Coordenador do Laboratório de Computação Móvel (Mobilab) e atua como Bolsista de Produtividade em Desenvolvimento Tecnológico e Extensão Inovadora (bolsa DT - atualmente no Nível 1C) do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). 

  • Perla Haydee da Silva

    PhD in Linguistic Studies from the Institute of Languages at UFMT (PPGEL). Holds a Master’s degree in Applied Linguistics from the Institute of Languages at UFMT (PPGEL), a specialization in Higher Education Didactics from UNIC - Universidade de Cuiabá, a Bachelor’s degree in Law from UNIC - Universidade de Cuiabá, and a Bachelor’s degree in Language and Literature from UFMT - Universidade Federal de Mato Grosso.

    Worked as a professor at the Faculty of Engineering, UFMT, Várzea Grande University Campus, where she taught the subjects Communication, Expression, and Technical Writing, as well as a Scientific Initiation Workshop, from 2014 to 2021.

    Currently, she is the coordinator of the Undergraduate Program in English Language and Literature at UFMT (since 2022) and teaches the subject English Language 2.

    Her research interests include the following areas: Applied Linguistics in Foreign Language Teaching, focusing on themes such as textbooks, English language teaching and learning, and teacher training; and Discourse Analysis with an emphasis on Gender Theories and Feminism.

  • Lidia Martins da Silva

    Doutorado em Computação Aplicada pela Universidade do Vale do Rio dos Sinos Unisinos, Mestrado em Ciência da Computação, Especialização em Formação Tecnológica e Inclusiva, Especialização em Informática na Educação, Especialização em Design Instrucional, Graduação em TPD - Tecnologia em Processamento de Dados. Coordenadora dos Laboratórios de Informática e do Núcleo de Processamento de Dados do Centro Universitário Cândido Rondon, Professora do Curso Ciência da Computação e Tecnologia em Análise de Sistemas do Centro Universitário Cândido Rondon. Tutora presencial na Centro Universitário Claretiano, Tutora no IFMT, professora e tutora nos cursos a distância da UFMT, Professora no curso de Pós Graduação Governança de TI do SENAC- MT, professora no curso de Sistemas da Informação no UNIVAG, Coordenadora do Núcleo de Execução dos cursos EaD - Projeto TCE e Universidade Federal de Mato Grosso - SETEC.  Coordenadora dos Cursos: Tecnologia em Análise e Desenvolvimento de Sistemas e Bacharelado em Ciência da Computação na Faculdade INVEST de Ciências e Tecnologia.

Referências

ABBAS, F.; AFZAAL, H.; FAROOQUE, A. A.; TANG, S. Crop yield prediction through proximal sensing and machine learning algorithms. Agronomy, v. 10, n. 7, 2020. DOI: https://doi.org/10.3390/agronomy10071046. DOI: https://doi.org/10.3390/agronomy10071046

ABDELLAH, N. A. A.; THANGADURAI, N. Real time application of iot for the agriculture in the field along with machine learning algorithm. In: International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), 2021. p. 1–6. DOI:10.1109/ICCCEEE49695.2021.9429606. DOI: https://doi.org/10.1109/ICCCEEE49695.2021.9429606

ACHARYA, U.; DAIGH, A. L. M.; ODUOR, P. G. Machine learning for predicting field soil moisture using soil, crop, and nearby weather station data in the red river valley of the north. Soil Systems, v. 5, n. 4, 2021. DOI: https://doi.org/10.3390/soilsystems5040057. DOI: https://doi.org/10.3390/soilsystems5040057

ADEBIYI, M. O.; OGUNDOKUN, R. O.; ABOKHAI, A. A. Machine learning– based predictive farmland optimization and crop monitoring system. Scientifica, 2020. DOI: 10.1155/2020/9428281. DOI: https://doi.org/10.1155/2020/9428281

AGRAWAL, A.; PATEL, M.; SHARMA, A. K. Novel supervised machine learning classification technique for improve accuracy of multi-valued datasets in agriculture. In: 6th International Conference on Inventive Computation Technologies (ICICT), 2021. p. 1067–1070. DOI:10.1109/ICICT50816.2021.9358691. DOI: https://doi.org/10.1109/ICICT50816.2021.9358691

AHISH, N.; SHASHIKALA, K.; BHARARTH, N. Automated modular data analysis and visualization system with predictive analytics using machine learning for agriculture field. International Journal of Research in Science, v. 5, n. 1, p. 1–3, 2019. DOI:10.24178/ijrs.2019.5.1.01. DOI: https://doi.org/10.24178/ijrs.2019.5.1.01

ANEECE, I.; THENKABAIL, P. S. Classifying crop types using two generations of hyperspectral sensors (hyperion and desis) with machine learning on the cloud. Remote Sensing, v. 13, n. 22, 2021. DOI: https://doi.org/10.3390/rs13224704. DOI: https://doi.org/10.3390/rs13224704

BALAKRISHNA, K.; MOHAMMED, F.; ULLAS, C.; HEMA, C.; SONAKSHI, S. Application of iot and machine learning in crop protection against animal intrusion. Global Transitions Proceedings, v. 2, n. 2, p. 169–174, 2021. International Conference on Computing System and its Applications (ICCSA- 2021). DOI: https://doi.org/10.1016/j.gltp.2021.08.061. DOI: https://doi.org/10.1016/j.gltp.2021.08.061

BALNE, S. Smart agriculture using advanced machine learning algorithms. International Journal of Innovative Research in Science, Engineering and Technology, v. 9, n. 7, p. 6836-6840, July 2020.

BANERJEE, B. P.; SHARMA, V.; SPANGENBERG, G.; KANT, S. Machine learning regression analysis for estimation of crop emergence using multispectral uav imagery. Remote Sensing, v. 13, n. 15, 2021, DOI: https://doi.org/10.3390/rs13152918. DOI: https://doi.org/10.3390/rs13152918

BARNES, M. L.; YODER, L.; KHODAEE, M. Detecting winter cover crops and crop residues in the midwest us using machine learning classification of thermal and optical imagery. Remote Sensing, v. 13, n. 10, 2021. DOI: https://doi.org/10.3390/rs13101998. DOI: https://doi.org/10.3390/rs13101998

BECK, M. A.; LIU, C.-Y.; BIDINOSTI, C. P.; HENRY, C. J.; GODEE, C. M.; AJMANI, M. An embedded system for the automated generation of labeled plant images to enable machine learning applications in agriculture. PLOS ONE, v. 15, n. 12, p. 1–23, 2020. DOI: https://doi.org/10.1371/journal.pone.0243923. DOI: https://doi.org/10.1371/journal.pone.0243923

BHIMANPALLEWAR, R. N.; NARASINGARAO, M. R. Alternative approaches of machine learning for agriculture advisory system. In: 10th International Conference on Cloud Computing, Data Science Engineering (Confluence), 2020. p. 27–31, DOI: DOI:10.1109/Confluence47617.2020.9058152. DOI: https://doi.org/10.1109/Confluence47617.2020.9058152

BUDGEN, D.; BRERETON, P. Performing systematic literature reviews in software engineering. In: Proceedings of the 28th International Conference on Software Engineering, ICSE ’06. 2006. p. 1051–1052, New York, NY, USA. Association for Computing Machinery, DOI: https://doi.org/10.1145/1134285.1134500. DOI: https://doi.org/10.1145/1134285.1134500

CHATERJI, S.; DELAY, N.; EVANS, J.; MOSIER, N.; ENGEL, B.; BUCKMASTER, D.; LADISCH, M. R.; CHANDRA, R. Lattice: A vision for machine learning, data engineering, and policy considerations for digital agriculture at scale. IEEE Open Journal of the Computer Society, v. 2, p. 227–240, 2021. DOI: DOI 10.1109/OJCS.2021.3085846. DOI: https://doi.org/10.1109/OJCS.2021.3085846

CHEN, Z.; GOH, H. S.; SIN, K. L.; LIM, K.; KA, N.; CHUNG, H.; LIEW, X. Y. Automated Agriculture Commodity Price Prediction System with Machine Learning Techniques. Advances in Science, Technology and Engineering Systems Journal, v. 6, n. 4, p. 376–384, 2021. DOI: https://doi.org/10.48550/arXiv.2106.12747. DOI: https://doi.org/10.25046/aj060442

CHINNAIYAN, R.; BALACHANDAR, S. Reliable administration framework of drones and iot sensors in agriculture farmstead using blockchain and smart contracts. In: Proceedings of the 2020 2nd International Conference on Big Data Engineering and Technology, BDET. 2020. p. 106–111, New York, NY, USA. Association for Computing Machinery, DOI: https://doi.org/10.1145/3378904.3378918. DOI: https://doi.org/10.1145/3378904.3378918

CRISOSTOMO DE CASTRO FILHO, H.; ABÍLIO DE CARVALHO JUNIOR, O.; FERREIRA DE CARVALHO, O. L.; POZZOBON DE BEM, P.; DOS SANTOS DE MOURA, R.; OLINO DE ALBUQUERQUE, A.; ROSA SILVA, C.; GUIMARAES FERREIRA, P. H.; FONTES GUIMARÃES, R.; TRANCOSO GOMES, R. A. Rice crop detection using lstm, bi-lstm, and machine learning models from sentinel-1 time series. Remote Sensing, v. 12, n. 16, 2020. DOI: https://doi.org/10.3390/rs12162655. DOI: https://doi.org/10.3390/rs12162655

DANNER, M.; BERGER, K.; WOCHER, M.; MAUSER, W.; HANK, T. Efficient RTM-based training of machine learning regression algorithms to quantify biophysical biochemical traits of agricultural crops. ISPRS Journal of Photogrammetry and Remote Sensing, v. 173, n. 278–296, 2021. DOI: https://doi.org/10.1016/j.isprsjprs.2021.01.017. DOI: https://doi.org/10.1016/j.isprsjprs.2021.01.017

DASH, R.; DASH, D. K.; AND BISWAL, G. Classification of crop based on macronutrients and weather data using machine learning techniques. Results in Engineering, v. 9, p. 100203, 2021. DOI: DOI:10.1016/j.rineng.2021.100203. DOI: https://doi.org/10.1016/j.rineng.2021.100203

DING, Y.; ZHANG, H.; WANG, Z.; XIE, Q.; WANG, Y.; LIU, L.; HALL, C. C. A comparison of estimating crop residue cover from sentinel-2 data using empirical regressions and machine learning methods. Remote Sensing, v. 12, n. 9, 2020. DOI: https://doi.org/10.3390/rs12091470. DOI: https://doi.org/10.3390/rs12091470

DUBOIS, A.; TEYTAUD, F.; VEREL, S. Short term soil moisture forecasts for potato crop farming: A machine learning approach. Computers and Electronics in Agriculture, v. 180, p. 105902, 2021. DOI: DOI: 10.1016/j.compag.2020.105902. DOI: https://doi.org/10.1016/j.compag.2020.105902

FENG, P.; WANG, B.; LIU, D. L.; YU, Q. Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in south-eastern australia. Agricultural Systems, v. 173, p. 303–316, 2019. DOI: 10.1016/j.agsy.2019.03.015. DOI: https://doi.org/10.1016/j.agsy.2019.03.015

FENU, G.; MALLOCI, F. M. An application of machine learning technique in forecasting crop disease. In Proceedings of the 2019 3rd International Conference on Big Data Research, ICBDR 2019. p. 76–82, New York, NY, USA. Association for Computing Machinery, DOI: https://doi.org/10.1145/3372454.3372474. DOI: https://doi.org/10.1145/3372454.3372474

FEYISA, G. L.; PALAO, L. K.; NELSON, A.; GUMMA, M. K.; PALIWAL, A.; WIN, K. T.; NGE, K. H.; JOHNSON, D. E. Characterizing and mapping cropping patterns in a complex agro-ecosystem: An iterative participatory mapping procedure using machine learning algorithms and modis vegetation indices. Computers and Electronics in Agriculture, v. 175, p. 105595, 2020. DOI: https://doi.org/10.1016/j.compag.2020.105595. DOI: https://doi.org/10.1016/j.compag.2020.105595

FOLBERTH, C.; BAKLANOV, A.; BALKOVIC, J.; SKALSKˇ Y, R.; KHABAROV, N.; OBERSTEINER, M. Spatio-temporal downscaling of gridded crop model yield estimates based on machine learning. Agricultural and Forest Meteorology, v. 264, p. 1–15, 2019. DOI: https://doi.org/10.1016/j.agrformet.2018.09.021. DOI: https://doi.org/10.1016/j.agrformet.2018.09.021

GARG, S.; PUNDIR, P.; JINDAL, H.; SAINI, H.; GARG, S. Towards a multimodal system for precision agriculture using iot and machine learning. Computer Science, 2021. DOI: DOI:10.48550/arXiv.2107.04895. DOI: https://doi.org/10.1109/ICCCNT51525.2021.9579646

GONG, D.; HAO, W.; GAO, L.; FENG, Y.; CUI, N. Extreme learning machine for reference crop evapotranspiration estimation: Model optimization and spatiotemporal assessment across different climates in china. Computers and Electronics in Agriculture, v. 187, p. 106294, 2021. DOI: 10.1016/j.compag.2021.106294. DOI: https://doi.org/10.1016/j.compag.2021.106294

GUMMA, M. K.; THENKABAIL, P. S.; TELUGUNTLA, P. G.; OLIPHANT, A.; XIONG, J.; GIRI, C.; PYLA, V.; DIXIT, S.; WHITBREAD, A. M. Agricultural cropland extent and areas of south asia derived using landsat satellite 30-m time-series big-data using random forest machine learning algorithms on the google earth engine cloud. GIScience & Remote Sensing, v. 57, n. 3, p. 302–322, 2020. DOI: https://doi.org/10.1080/15481603.2019.1690780. DOI: https://doi.org/10.1080/15481603.2019.1690780

HU, B.; XUE, J.; ZHOU, Y.; SHAO, S.; FU, Z.; LI, Y.; CHEN, S.; QI, L.; SHI, Z. Modelling bioaccumulation of heavy metals in soil-crop ecosystems and identifying its controlling factors using machine learning. Environmental Pollution, v. 262, p. 114308, 2020. DOI: https://doi.org/10.1016/j.envpol.2020.114308. DOI: https://doi.org/10.1016/j.envpol.2020.114308

IATROU, M.; KARYDAS, C.; IATROU, G.; PITSIORLAS, I.; ASCHONITIS, V.; RAPTIS, I.; MPETAS, S.; KRAVVAS, K.; MOURELATOS, S. Topdressing nitrogen demand prediction in rice crop using machine learning systems. Agriculture, v. 11, n. 4, 2021. DOI: https://doi.org/10.3390/agriculture11040312. DOI: https://doi.org/10.3390/agriculture11040312

JAGTAP, S. T.; PHASINAM, K.; KASSANUK, T.; JHA, S. S.; GHOSH, T.; THAKAR, C. M. Towards application of various machine learning techniques in agriculture. Materials Today: Proceedings, 2021. DOI:10.1016/j.matpr.2021.06.236. DOI: https://doi.org/10.1016/j.matpr.2021.06.236

JU, S.; LIM, H.; MA, J. W.; KIM, S.; LEE, K.; ZHAO, S.; HEO, J. Optimal county-level crop yield prediction using modis-based variables and weather data: A comparative study on machine learning models. Agricultural and Forest Meteorology, v. 307, p. 108530, 2021. DOI: 10.1016/j.agrformet.2021.108530. DOI: https://doi.org/10.1016/j.agrformet.2021.108530

KASINATHAN, T.; SINGARAJU, D.; UYYALA, S. R. Insect classification and detection in field crops using modern machine learning techniques. Information Processing in Agriculture, v. 8, n. 3, p. 446–457, 2021. DOI: https://doi.org/10.1016/j.inpa.2020.09.006. DOI: https://doi.org/10.1016/j.inpa.2020.09.006

KETCHUM, D.; JENCSO, K.; MANETA, M. P.; MELTON, F.; JONES, M. O.; HUNTINGTON, J. Irrmapper: A machine learning approach for high resolution mapping of irrigated agriculture across the western u.s. Remote Sensing, v. 12, n. 14, 2020. DOI: https://doi.org/10.3390/rs12142328. DOI: https://doi.org/10.3390/rs12142328

KGANYAGO, M.; MHANGARA, P.; ADJORLOLO, C. Estimating crop biophysical parameters using machine learning algorithms and sentinel-2 imagery. Remote Sensing, v. 13, n. 21, 2021. DOI: https://doi.org/10.3390/rs13214314. DOI: https://doi.org/10.3390/rs13214314

KWAK, G.-H.; PARK, N.-W. Impact of texture information on crop classification with machine learning and UAV images. Applied Sciences, v. 9, n. 4, 2021. DOI: https://doi.org/10.3390/app9040643. DOI: https://doi.org/10.3390/app9040643

LI, Z.; ZHANG, Z.; ZHANG, L. Improving regional wheat drought risk assessment for insurance application by integrating scenario-driven crop model, machine learning, and satellite data. Agricultural Systems, V. 191, p. 103141, 2021. DOI: https://doi.org/10.1016/j.agsy.2021.103141. DOI: https://doi.org/10.1016/j.agsy.2021.103141

LIU, L.; ZHAN, X. Analysis of financing efficiency of chinese agricultural listed companies based on machine learning. Complexity, v. 2019, p. 9190273, 2019. DOI: https://doi.org/10.1155/2019/9190273. DOI: https://doi.org/10.1155/2019/9190273

MAIMAITIJIANG, M.; SAGAN, V.; SIDIKE, P.; DALOYE, A. M.; ERKBOL, H.; FRITSCHI, F. B. (2020). Crop monitoring using satellite/UAV data fusion and machine learning. Remote Sensing, v. 12, n. 9, 2019, DOI: https://doi.org/10.3390/rs12091357. DOI: https://doi.org/10.3390/rs12091357

MANRIQUE-SILUPU, J.; CAMPOS, J. C.; PAIVA, E.; IPANAQUE, W. Thrips incidence prediction in organic banana crop with machine learning. Heliyon, p. e08575, 2021. http://dx.doi.org/10.1016/j.heliyon.2021.e08575. DOI: https://doi.org/10.1016/j.heliyon.2021.e08575

MAPONYA, M. G.; VAN NIEKERK, A.; MASHIMBYE, Z. E. Pre-harvest classification of crop types using a sentinel-2 time-series and machine learning. Computers and Electronics in Agriculture, v. 169, p. 105164, 2020. http://dx.doi.org/10.1016/j.compag.2019.105164. DOI: https://doi.org/10.1016/j.compag.2019.105164

MATEO-SANCHIS, A.; PILES, M.; AMOROS-L´ OPEZ, J.; MU´ NOZ-MAR˜ ´I, J.; ADSUARA, J. E.; MORENO-MART´INEZ, Alvaro; CAMPS-VALLS, G. Learning main drivers of crop progress and failure in europe with interpretable machine learning. International Journal of Applied Earth Observation and Geoinformation, v. 104, p. 102574, 2021. DOI: https://doi.org/10.1016/j.jag.2021.102574. DOI: https://doi.org/10.1016/j.jag.2021.102574

MAZZIA, V.; COMBA, L.; KHALIQ, A.; CHIABERGE, M.; GAY, P. UAV and machine learning based refinement of a satellite-driven vegetation index for precision agriculture. Sensors, v. 20, n. 9, 2020. DOI: https://doi.org/10.3390/s20092530. DOI: https://doi.org/10.3390/s20092530

MIAN, P.; CONTE, T.; NATALI, A.; BIOLCHINI, J.; TRAVASSOS, G. A systematic review process to software engineering - technical report rt-es 679/05. [S. l.: s. n.], 2005.

MOMM, H. G.; ELKADIRI, R.; PORTER, W. Crop-type classification for longterm modeling: An integrated remote sensing and machine learning approach. Remote Sensing, v. 12, n. 3, 2020. DOI: https://doi.org/10.3390/rs12030449. DOI: https://doi.org/10.3390/rs12030449

MOUHSSINE, R.; OTMAN, A.; KHATIR HAIMOUDI, E. Performance analysis of machine learning techniques for smart agriculture: Comparison of supervised classification approaches. International Journal of Advanced Computer Science and Applications, v. 11, n. 3, 2020. DOI: https://dx.doi.org/10.14569/IJACSA.2020.0110377. DOI: https://doi.org/10.14569/IJACSA.2020.0110377

MOUMNI, A.; LAHROUNI, A. Machine learning-based classification for croptype mapping using the fusion of high-resolution satellite imagery in a semiarid area. Scientifica, v. 2021, p. 8810279, 2021. DOI: https://doi.org/10.1155/2021/8810279. DOI: https://doi.org/10.1155/2021/8810279

MUNIASAMY, A. Machine learning for smart farming: A focus on desert agriculture. In: International Conference on Computing and Information Technology (ICCIT-1441), 2020. p. 1–5, DOI: 10.1109/ICCIT-144147971.2020.9213759. DOI: https://doi.org/10.1109/ICCIT-144147971.2020.9213759

MUTHONI, F.; THIERFELDER, C.; MUDERERI, B.; MANDA, J.; BEKUNDA, M.; HOESCHLEZELEDON, I. Machine learning model accurately predict maize grain yields in conservation agriculture systems in southern africa. In: 9th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), 2021. p. 1–5, DOI: http://dx.doi.org/10.1109/Agro-Geoinformatics50104.2021.9530335. DOI: https://doi.org/10.1109/Agro-Geoinformatics50104.2021.9530335

NAJAFI, P.; FEIZIZADEH, B.; NAVID, H. A comparative approach of fuzzy object based image analysis and machine learning techniques which are applied to crop residue cover mapping by using sentinel-2 satellite and uav imagery. Remote Sensing, v. 13, n. 5, 2021. DOI: https://doi.org/10.3390/rs13050937. DOI: https://doi.org/10.3390/rs13050937

PANT, J.; PANT, R.; KUMAR SINGH, M.; PRATAP SINGH, D.; PANT, H. Analysis of agricultural crop yield prediction using statistical techniques of machine learning. Materials Today: Proceedings, v. 46, p. 10922–10926, 2021. DOI: 10.1016/j.matpr.2021.01.948. DOI: https://doi.org/10.1016/j.matpr.2021.01.948

PAUDEL, D.; BOOGAARD, H.; DE WIT, A.; JANSSEN, S.; OSINGA, S.; PYLIANIDIS, C.; ATHANASIADIS, I. N. Machine learning for large-scale crop yield forecasting. Agricultural Systems, v. 187, p. 103016, 2021. DOI: https://doi.org/10.1016/j.agsy.2020.103016. DOI: https://doi.org/10.1016/j.agsy.2020.103016

PEPPES, N.; DASKALAKIS, E.; ALEXAKIS, T.; ADAMOPOULOU, E.; DEMESTICHAS, K. Performance of machine learning-based multi-model voting ensemble methods for network threat detection in agriculture 4.0. Sensors, v. 1, n. 22, 2021. DOI: https://doi.org/10.3390/s21227475. DOI: https://doi.org/10.3390/s21227475

PREMACHANDRA, J. S. A. N. W.; KUMARA, P. P. N. V. A novel approach for weather prediction for agriculture in sri lanka using machine learning techniques. In: International Research Conference on Smart Computing and Systems Engineering (SCSE), v 4, p. 182–189, 2021. DOI:10.1109/SCSE53661.2021.9568319. DOI: https://doi.org/10.1109/SCSE53661.2021.9568319

PRODHAN, F. A.; ZHANG, J.; PANGALI SHARMA, T. P.; NANZAD, L.; ZHANG, D.; SEKA, A. M.; AHMED, N.; HASAN, S. S.; HOQUE, M. Z.; MOHANA, H. P. Projection of future drought and its impact on simulated crop yield over south asia using ensemble machine learning approach. Science of The Total Environment, p. 151029, 2021. DOI: 10.1016/j.scitotenv.2021.151029. DOI: https://doi.org/10.1016/j.scitotenv.2021.151029

RADHAKRISHNAN, S. An improved machine learning algorithm for predicting blast disease in paddy crop. Materials Today: Proceedings, v. 33, p. 682–686, 2020. DOI: https://doi.org/10.1016/j.matpr.2020.05.802. DOI: https://doi.org/10.1016/j.matpr.2020.05.802

RAHMATI, O.; FALAH, F.; DAYAL, K. S.; DEO, R. C.; MOHAMMADI, F.; BIGGS, T.; MOGHADDAM, D. D.; NAGHIBI, S. A.; BUI, D. T. Machine learning approaches for spatial modeling of agricultural droughts in the south-east region of queensland australia. Science of The Total Environment, v. 699, p. 134230, 2020. DOI: 10.1016/j.scitotenv.2019.134230. DOI: https://doi.org/10.1016/j.scitotenv.2019.134230

RATTAN, D.; BHATIA, R.; SINGH, M. Software clone detection: A systematic review. Information and Software Technology, v. 55, n. 7, p. 1165–1199, 2020. DOI: https://doi.org/10.1016/j.infsof.2013.01.008. DOI: https://doi.org/10.1016/j.infsof.2013.01.008

SCHULZ, C.; HOLTGRAVE, A.-K.; KLEINSCHMIT, B. Large-scale winter catch crop monitoring with sentinel-2 time series and machine learning–an alternative to on-site controls? Computers and Electronics in Agriculture, v. 186, p. 106173, 2020. DOI: 10.1016/j.compag.2021.106173. DOI: https://doi.org/10.1016/j.compag.2021.106173

SCHWALBERT, R. A.; AMADO, T.; CORASSA, G.; POTT, L. P.; PRASAD, P.; CIAMPITTI, I. A. Satellite-based soybean yield forecast: Integrating machine learning and weather data for improving crop yield prediction in southern brazil. Agricultural and Forest Meteorology, v. 284, p. 107886, 2020. DOI: https://doi.org/10.1016/j.agrformet.2019.107886. DOI: https://doi.org/10.1016/j.agrformet.2019.107886

SCOTT, E.; HIRABAYASHI, L.; LEVENSTEIN, A.; KRUPA, N.; JENKINS, P. The development of a machine learning algorithm to identify occupational injuries in agriculture using pre-hospital care reports. Health Information Science and Systems, v. 9, n. 1, p. 31, 2020. DOI: https://doi.org/10.1007/s13755-021-00161-9. DOI: https://doi.org/10.1007/s13755-021-00161-9

SHAFI, U.; MUMTAZ, R.; IQBAL, N.; ZAIDI, S. M. H.; ZAIDI, S. A. R.; HUSSAIN, I.; MAHMOOD, Z. A multi-modal approach for crop health mapping using low altitude remote sensing, internet of things (iot) and machine learning. IEEE Access, v. 8, n. 112708–112724, 2020. DOI:10.1109/ACCESS.2020.3002948. DOI: https://doi.org/10.1109/ACCESS.2020.3002948

SHUKLA, R.; DUBEY, G.; MALIK, P.; SINDHWANI, N.; ANAND, R.; DAHIYA, A.; YADAV, V. Detecting crop health using machine learning techniques in smart agriculture system. Journal of Scientific and Industrial Research (JSIR), v. 80, p. 699–706, 2021. DOI: https://doi.org/10.56042/jsir.v80i08.44034

SKAWSANG, S.; NAGAI, M. K.; TRIPATHI, N.; SONI, P. Predicting rice pest population occurrence with satellite-derived crop phenology, ground meteorological observation, and machine learning: A case study for the central plain of thailand. Applied Sciences, v. 9, n. 22, 2021. DOI: https://doi.org/10.3390/app9224846. DOI: https://doi.org/10.3390/app9224846

SOSA, L.; JUSTEL, A.; MOLINA, Detection of crop hail damage with a machine learning algorithm using time series of remote sensing data. Agronomy, v. 11, n. 10, 2021. DOI: https://doi.org/10.3390/agronomy11102078. DOI: https://doi.org/10.3390/agronomy11102078

TANG, Z.; WANG, H.; LI, X.; LI, X.; CAI, W.; HAN, C. An object-based approach for mapping crop coverage using multiscale weighted and machine learning methods. In: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, v. 13, p. 1700–1713, 2020. DOI:10.1109/JSTARS.2020.2983439. DOI: https://doi.org/10.1109/JSTARS.2020.2983439

TAO, Y.; YOU, F. Prediction of cover crop adoption through machine learning models using satellite-derived data. IFAC-PapersOnLine, v. 52, n. 30, p. 137–142, 2019. DOI: https://doi.org/10.1016/j.ifacol.2019.12.511. DOI: https://doi.org/10.1016/j.ifacol.2019.12.511

TOWETT, E. K.; DRAKE, L. B.; ACQUAH, G. E.; HAEFELE, S. M.; MCGRATH, S. P.; SHEPHERD, K. D. Comprehensive nutrient analysis in agricultural organic amendments through non-destructive assays using machine learning. PLOS ONE, v. 15, n. 12, p. 1–17, 2019. DOI: https://doi.org/10.1371/journal.pone.0242821. DOI: https://doi.org/10.1371/journal.pone.0242821

TUFAIL, M.; IQBAL, J.; TIWANA, M. I.; ALAM, M. S.; KHAN, Z. A.; KHAN, M. T. Identification of tobacco crop based on machine learning for a precision agricultural sprayer. IEEE Access, v. 9, p. 23814–23825, 2021a. DOI: 10.1109/ACCESS.2021.3056577. DOI: https://doi.org/10.1109/ACCESS.2021.3056577

TUFAIL, R.; AHMAD, A.; JAVED, M. A.; AHMAD, S. R. A machine learning approach for accurate crop type mapping using combined SAR and optical time series data. Advances in Space Research, 2021b. DOI: 10.1016/j.asr.2021.09.019. DOI: https://doi.org/10.1016/j.asr.2021.09.019

VAN ECK, N. J.; WALTMAN, L. Software survey: Vosviewer, a computer program for bibliometric mapping. Scientometrics, v. 84, p. 523-538, 2009. DOI: https://doi.org/10.1007/s11192-009-0146-3. DOI: https://doi.org/10.1007/s11192-009-0146-3

WALEED, M.; UM, T.-W.; KAMAL, T.; USMAN, S. M. Classification of agriculture farm machinery using machine learning and internet of things. Symmetry, v. 13, n. 3, 2021. DOI: https://doi.org/10.3390/sym13030403. DOI: https://doi.org/10.3390/sym13030403

WALTMAN, L.; VAN ECK, N. J.; NOYONS, E. C. A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics, v. 4, n. 4, p. 629–635, 2010. DOI: https://doi.org/10.1016/j.joi.2010.07.002. DOI: https://doi.org/10.1016/j.joi.2010.07.002

WANG, C.; LIU, S.; ZHENG, H.; HU, H.; SONG, L. Application of machine learning in comprehensive evaluation of agricultural high-tech. In: Proceedings of the 3rd International Conference on Computer Science and Application Engineering, CSAE, 2019. DOI: https://doi.org/10.3390/s21113758. DOI: https://doi.org/10.1145/3331453.3362057

WANG, S.; GUAN, K.; WANG, Z.; AINSWORTH, E. A.; ZHENG, T.; TOWNSEND, P. A.; LIU, N.; NAFZIGER, E.; MASTERS, M. D.; LI, K.; WU, G.; JIANG, C. Airborne hyperspectral imaging of nitrogen deficiency on crop traits and yield of maize by machine learning and radiative transfer modeling. International Journal of Applied Earth Observation and Geoinformation, v. 105, p. 102617, 2021. DOI: https://doi.org/10.1016/j.jag.2021.102617. DOI: https://doi.org/10.1016/j.jag.2021.102617

WEI, M. C. F.; MALDANER, L. F.; OTTONI, P. M. N.; MOLIN, J. P. Carrot yield mapping: A precision agriculture approach based on machine learning. AI, v. 1, n. 2, p. 229-241, 2020. DOI: DOI: 10.3390/ai1020015. DOI: https://doi.org/10.3390/ai1020015

WOLANIN, A.; CAMPS-VALLS, G.; GOMEZ-CHOVA, L.; MATEO-GARCIA, G.; VAN DER TOL, C.; ZHANG, Y.; GUANTER, L. Estimating crop primary productivity with sentinel2 and landsat 8 using machine learning methods trained with radiative transfer simulations. Remote Sensing of Environment, v. 225, p. 441–457, DOI: 10.3390/ai1020015. DOI:10.48550/arXiv.2012.1210. DOI: https://doi.org/10.1016/j.rse.2019.03.002

WORRALL, G.; RANGARAJAN, A.; JUDGE, J. Domain-guided machine learning for remotely sensed in-season crop growth estimation. Remote Sensing, v. 13, n. 22, 2021. DOI:10.3390/rs13224605. DOI: https://doi.org/10.3390/rs13224605

XAVIER, L. C. P.; SILVA, S. M. O. D.; CARVALHO, T. M. N.; PONTES FILHO, J. D.; SOUZA FILHO, F. D. A. D. Use of machine learning in evaluation of drought perception in irrigated agriculture: The case of an irrigated perimeter in Brazil. Water, v. 12, n. 6, 2020. DOI: https://doi.org/10.3390/w12061546. DOI: https://doi.org/10.3390/w12061546

XIE, Q.; WANG, J.; LOPEZ-SANCHEZ, J. M.; PENG, X.; LIAO, C.; SHANG, J.; ZHU, J.; FU, H.; BALLESTER-BERMAN, J. D. Crop height estimation of corn from multi-year radarsat-2 polarimetric observables using machine learning. Remote Sensing, v. 13, n. 3, 2020. DOI:10.3390/rs13030392. DOI: https://doi.org/10.3390/rs13030392

YAMAC, S. S.; TODOROVIC, M. Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data. Agricultural Water Management, v. 228, p. 105875, 2020. DOI: https://doi.org/10.1016/j.agwat.2019.105875

YAN, S.; YAO, X.; ZHU, D.; LIU, D.; ZHANG, L.; YU, G.; GAO, B.; YANG, J.; YUN, W. Large-scale crop mapping from multi-source optical satellite imageries using machine learning with discrete grids. International Journal of Applied Earth Observation and Geoinformation, v. 103, p. 102485, 2020. DOI: https://doi.org/10.1016/j.jag.2021.102485

YANG, M.; CHO, S.-I. High-resolution 3d crop reconstruction and automatic analysis of phenotyping index using machine learning. Agriculture, v. 11, n. 10, 2021. DOI:10.3390/agriculture11101010. DOI: https://doi.org/10.3390/agriculture11101010

YANG, N.; LIU, D.; FENG, Q.; XIONG, Q.; ZHANG, L.; REN, T.; ZHAO, Y.; ZHU, D.; HUANG, J. Large-scale crop mapping based on machine learning and parallel computation with grids. Remote Sensing, v. 11, n. 12, 2019. DOI:10.3390/rs11121500. DOI: https://doi.org/10.3390/rs11121500

YUAN, C. Z.; SAN, W. W.; LEONG, T. W. Determining optimal lag time selection function with novel machine learning strategies for better agricultural commodity prices forecasting in Malaysia. In: Proceedings of the 2020 2nd International Conference on Information Technology and Computer Communications, ITCC. 2020. p. 37–42. DOI:10.1145/3417473.3417480. DOI: https://doi.org/10.1145/3417473.3417480

ZHANG, J.; HE, Y.; YUAN, L.; LIU, P.; ZHOU, X.; HUANG, Y. Machine learningbased spectral library for crop classification and status monitoring. Agronomy, v. 9, n. 9, 2019. DOI: https://doi.org/10.3390/agronomy9090496. DOI: https://doi.org/10.3390/agronomy9090496

Downloads

Publicado

20/02/2025

Como Citar

MACHINE LEARNING ALGORITHMS IN AGRICULTURE: A LITERATURE REVIEW ON CLIMATE AND PRICE PREDICTION, PEST AND DISEASE DETECTION, AND PRODUCTION MONITORING. (2025). RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 6(2), e626211. https://doi.org/10.47820/recima21.v6i2.6211