MODELING IN TIME SERIES FOR ESTIMATING MAXIMUM DAILY PRECIPITATION IN THE MUNICIPALITY OF SANTO BENTO DO UNA (PERNAMBUCO-BRAZIL)

Authors

  • Moacyr Cunha Filho
  • Fábio Henrique Portella Corrêa de Oliveira Universidade Federal Rural de Pernambuco
  • Neide Kazue Sakugawa Shinohara
  • Victor Casimiro Piscoya
  • Raimundo Mainar de Medeiros
  • Manoel Vieira de França
  • Guilherme Rocha Moreira
  • Romildo Morant de Holanda

DOI:

https://doi.org/10.47820/recima21.v3i2.1164

Keywords:

propose a time series modeling to estimate the maximum

Abstract

This work aims to propose a time series modeling to estimate the maximum daily precipitation in a municipality in the interior of Pernambuco. The objective is also to estimate the maximum daily precipitation for the region in the return times of 2, 5, 10, 50, 100 and 1000 years. The work was carried out in the municipality of São Bento do Una (Pernambuco, Brazil). For the modeling, pluviometric data extracted from the Instituto de Meterologia data platform were used, which were fitted in the normal, log-normal, gamma, Weibull and Gumbel probability distribution functions. To assess whether the calculated distributions fit the probability distribution functions tested, the Kolmogorv-Smirnov test was performed. To estimate the maximum daily precipitation considering different return times, equations recognized in the literature were used. The results show that the Weibull and Gumbel distributions provided a better fit than the normal, log-normal and gamma distributions. The difference in terms of return period and related precipitation is notable for each of the five distributions tested and higher values ​​of maximum daily precipitation are observed in the longer return periods, especially in the log-normal distribution.

Downloads

Download data is not yet available.

References

DORNELES, V.R., DAMÉ, R.C.F., TEIXEIRA-GANDRA, C.F.A., WEBER, P.M., KLUMB, G.B., RAMIREZ, M.A.A. Modelagem da probabilidade das relações intensidade-duração-frequência de ocorrência da precipitação pluvial para Pelotas, RS. Revista Brasileira de Engenharia Agrícola. Ambiente, v. 23, 2019.

INMET. Instituto Nacional de Meteorologia. Ministério da Agricultura, Pecuária e Abastecimento. Disponível em:<https://portal.inmet.gov.br/sobre>. Acesso em: 21 de nov. 2021.

KÖPPEN, W. Grundriss der Klimakunde: Outline of climate science. Berlin: Walter de Gruyter, p.388, 1931.

KUMAR, V., SHANU, J. Statistical distribution of rainfall in Uttarakhand, India. Applied Water Science, v. 7, p. 4765–4776, 2017.

LIMA, A.O., LYRA, G.B., ABREU, M.C., OLIVEIRA-JÚNIOR, J.F., ZERI, M., CUNHA-ZERI, G. Extreme rainfall events over Rio de Janeiro State, Brazil: Characterization using probability distribution functions and clustering analysis. Atmospheric Research, v. 247, 2021.

DE MICHELE, C., AVANZI, F. Superstatistical distribution of daily precipitation extremes: A worldwide assessment. Scientific Reports, v. 8, 2018.

MAMOON, A.A., RAHMAN, A. Selection of the best fit probability distribution in rainfall frequency analysis for Qatar. Nat Hazards, v. 86, p. 281–296, 2017.

MEDEIROS, R.M., HOLANDA, R.M., SILVA, V.P., SILVA, C.J. Tendências pluviais e análise da média móvel para São Bento do Una-PE, Brasil. Revista de Geografia (Recife), v. 35, 2018.

MOCCIA, B., MINEO, C., RIDOLFI, E., RUSSO, F., NAPOLITANO, F. Probability distributions of daily rainfall extremes in Lazio and Sicily, Italy, and design rainfall inferences. Journal of Hydrology: Regional Studies, v.33, 2021.

SANTOS, D.C., ALBUQUERQUE, E.M. Métodos de estimativa de precipitação máxima diária na cidade de João Pessoa-PB. CLIMEP – Climatologia e Estudos da Paisagem, v.9, 2016.

SILVA, J.R.S., TAVEIRA, M.K., MESQUISA, A.A., SERRANO, R.O.P., MOREIRA, J.G.V. Caracterização temporal da precipitação pluviométrica na cidade de Cruzeiro do Sul, Acre, Brasil. UÁQUIRI - Revista do Programa de Pós Graduação em Geografia da Ufac, v. 3, 2021.

TOSUNOGLU, F., GURBUZ, F. Mapping spatial variability of annual rainfall under different return periods in Turkey: The application of various distribution functions and model selection techniques. Meteorological Application, v. 26, p. 671-681, 2019.

VAHEDDOOST, B., AKSOY, H. Structural characteristics of annual precipitation in Lake Urmia basin. Theorical and Applied Climatology, v. 128, p. 919–932, 2017.

VIVEKANANDAN, N. Comparison of probability distributions in extreme value analysis of rainfall and temperature data. Environmental Earth Sciences, v.77, p.1-10, 2018.

Published

13/02/2022

How to Cite

MODELING IN TIME SERIES FOR ESTIMATING MAXIMUM DAILY PRECIPITATION IN THE MUNICIPALITY OF SANTO BENTO DO UNA (PERNAMBUCO-BRAZIL) . (2022). RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 3(2), e321164. https://doi.org/10.47820/recima21.v3i2.1164