ARTIFICIAL INTELLIGENCE: MACHINE LEARNING IN BUSINESS MANAGEMENT

Authors

DOI:

https://doi.org/10.47820/recima21.v3i6.1617

Keywords:

Artificial intelligence, Machine learning, Business management

Abstract

With the advent and beginning of the implementation of the concepts of Industry 4.0 in companies, in combination with the consequences brought by the global pandemic of Covid-19, the use of technology at various levels, processes, sectors and activities, has increased abruptly in recent years in several segments, and with it also, the insertion of Artificial Intelligence and Machine Learning. Faced with the increasingly competitive, fierce and technological scenario, in which adapting to new trends and the new normal, more digital, automated and technological is a matter of survival for several companies, those responsible for business management experience the need for process automation and immersion in the technological world, bringing new technologies to their companies in order to remain in the market in order to optimize their resources and adapt to new demands, and has been increasingly using Artificial Intelligence and Machine Learning to do so. Based on this information, this work aims to demonstrate that Artificial Intelligence, and more specifically, Machine Learning, can be used in companies for business management, in order to introduce the various technologies associated with Artificial Intelligence and its applications in Business Management, in addition to the benefits arising from such implementariam. To this end, a study was carried out based on a bibliographic research on Artificial Intelligence, Machine Learning and Business Management, evidencing the machine learning tools used for business management.

Downloads

Download data is not yet available.

Author Biographies

  • Weslley Pina Campos

    Universidade de Araraquara - UNIARA

  • Renata Mirella Farina

    Universidade de Araraquara - UNIARA

  • Fabiana Florian

    Universidade de Araraquara - UNIARA

References

AIRES, C. S. F.; ALMEIDA, G. J.; SILVEIRA, S. O. Inteligência Artificial na Gestão de

Estoque. X FATECLOG 4.0, Fatec: Guarulhos, São Paulo. 2019. Disponível em: UNIVERSIDADE METODISTA DE PIRACICABA (fateclog.com.br). Acesso em: 27 maio. 2022.

ARAÚJO, A. A. P. Uma Arquitetura Utilizando Algoritmo Genético Interativo E Aprendizado De Máquina Aplicado Ao Problema Do Próximo Release. Universidade Federal do Ceará: Fortaleza, 2015. Disponível em: https://www.researchgate.net/publication/320273267_Uma_Arquitetura_utilizando_Algoritmo_Genetico_Interativo_e_Aprendizado_de_Maquina_aplicado_ao_Problema_do_Proximo_Release. Acesso em: 27 maio. 2022.

BAZZOTTI, C.; GARCIA, E. (2006). A importância do sistema de informação gerencial na gestão empresarial para tomada de decisões. Ciências Sociais Aplicadas em Revista, [S. l.], v. 6, n. 11, 2000. Disponível em: https://saber.unioeste.br/index.php/csaemrevista/article/view/368. Acesso em: 29 maio. 2022.

BRYNJOLFSSON, E.; MCAFEE, A. Machine, platform, crowd: harnessing our digital future. New York: W W Norton & Company, 2017. Disponível em: https://starlab-alliance.com/wp-content/uploads/2017/09/AI-Article.pdf. Acesso em: 27 maio. 2022

DAMACENO, S. S.; VASCONCELOS, R. O. Inteligência Artificial: uma breve abordagem sobre seu conceito real e o conhecimento popular. Caderno De Graduação - Ciências Exatas E Tecnológicas - UNIT - SERGIPE, 5(1), 11. 2018. Disponível em: https://periodicos.set.edu.br/cadernoexatas/article/view/5729. Acesso em: 27 maio. 2022.

DELLOT, B.; WALLACE-STEAPHYNS, F. (2017).The Age of Automation Artificial intelligence, robotics and the future of low-skilled work by Benedict Dellot and Fabian WallaceStephens September 2017. Disponível em: rsa_the-age-of-automation-report.pdf (thersa.org). Acesso em: 27 maio. 2022.

FAÇANHA, S. O. Prospecção Do Sobre O Uso De Machine Learning Nas Corretoras Brasileiras. Universidade Federal do Ceará: Fortaleza, 2019. Disponível em: https://repositorio.ufc.br/bitstream/riufc/60322/1/2019_tcc_sofa%c3%a7anha.pdf. Acesso em: 27 maio. 2022.

HERMANN, M., PENTEK, T., OTTO, B. Design Principles for Industrie 4.0 Scenarios: A Literature Review. Technische Universität Dortmund: working paper 01/2015. 2015.

LUDERMIR, T. B. Inteligência Artificial e Aprendizado de Máquina: estado atual e tendências Inteligência Artificial - Estud. av. 35 (101), Jan-Apr 2021. Disponível em: https://www.scielo.br/j/ea/a/wXBdv8yHBV9xHz8qG5RCgZd/ https://doi.org/10.1590/s0103-4014.2021.35101.007. Acesso em: 29 maio. 2022.

MELO, G. Inteligência Artificial, Gestão Empresarial E O Futuro Do Trabalho No Brasil. 6. 160-183. Rio de Janeiro – Rio de Janeiro. 2021 Disponível em: https://www.researchgate.net/publication/356389071_INTELIGENCIA_ARTIFICIAL_GESTAO_EMPRESARIAL_E_O_FUTURO_DO_TRABALHO_NO_BRASIL. Acesso em: 28 maio. 2022.

RUSSELL, S. J.; NORVING, P (1962). Inteligência artificial /trad. Regina Célia Simille - Rio de Janeiro: LTC, 2021. Tradução de: Artificial intelligence, 3rd ed.

SILVA, D. G. M.; SANTOS, L. H. Aspectos positivos do uso da Inteligência Artificial/Machine Learning na gestão e planejamento da manutenção aeronáutica. (2021) PUC Goiás.

SOUZA, E. S.; GASPARETTO, V. Características E Impactos Da Indústria 4.0: Percepção De Estudantes De Ciências Contábeis. Anais do Congresso Brasileiro de Custos - ABC, [S. l.], 2018. Disponível em: https://anaiscbc.emnuvens.com.br/anais/article/view/4570. Acesso em: 27 maio. 2022.

Published

24/06/2022

How to Cite

ARTIFICIAL INTELLIGENCE: MACHINE LEARNING IN BUSINESS MANAGEMENT. (2022). RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 3(6), e361617. https://doi.org/10.47820/recima21.v3i6.1617