IN SILICO ANALYSIS OF THE CELL REGENERATION PROCESS THROUGH PIWI/PIRNA INTERACTION IN MUS MUSCULUS
DOI:
https://doi.org/10.47820/recima21.v4i11.4302Keywords:
Systems Biology, PIWI/piRNA interaction, Cell regenerationAbstract
Cell and tissue regeneration, much discussed in various areas of medicine and biology, still has gaps in its processes and functioning. In the last decade, the role of epigenetics in this function has been elucidated, with emphasis on non-coding RNAs, including piRNAs (PIWI-interacting RNAs), previously known for their role in germ cells and in controlling transposable elements. Recent studies have demonstrated piRNA functions in somatic tissue cells, such as the nervous system, and research in small rodents, especially Mus musculus, has indicated an important link between the expression of this pathway and the correct functioning of the regeneration process. As it is a relevant challenge for regenerative medicine to understand these processes, through the robust studies described here and using Bioinformatics tools, protein-protein interaction networks (PPIN) were built to identify target proteins for therapeutic treatments based on the functioning of the PIWI/piRNA gene pathway in Mus musculus. By analyzing these networks, we were able to identify relevant proteins, as well as their interactions, for the regenerative process in mammals and, with these results, in the future we will be able to develop in vivo tests based on the data obtained in silico, thus saving time and financial investment.
Downloads
References
CASOTTI, Matheus C.; MEIRA, Debora D. Construindo redes de interação proteína-
proteína por curadoria manual. Bioinfo, 2021.
COLTRI, Patricia Pereira. Caracterização de proteínas do spliceossomo e seu papel na
regulação do splicing e alterações celulares. 2021.
EUROPEAN BIOINFORMATICS INSTITUTE - QuickGO - Definition (GO:0035770
GONUTS page). Disponível em: https://www.ebi.ac.uk/QuickGO/term/GO:0035770. Acesso em 8
de setembro de 2023.
GRILLARI, Johannes; GRILLARI-VOGLAUER, Regina. Novel modulators of senescence,
aging, and longevity: Small non-coding RNAs enter the stage. Experimental gerontology, v. 45, n.
, p. 302-311, 2010.
KASHIMA, Makoto; AGATA, Kiyokazu; SHIBATA, Norito. What is the role of PIWI family
proteins in adult pluripotent stem cells? Insights from asexually reproducing animals, planarians.
Development, Growth & Differentiation, v. 62, n. 6, p. 407-422, 2020.
KIM, K. W. PIWI Proteins and piRNAs in the Nervous System. Mol. Cells, Seoul, v. 42, p.
-835, 2019.
LI, Danyan; TAYLOR, David H.; VAN WOLFSWINKEL, Josien C. PIWI-mediated control of
tissue-specific transposons is essential for somatic cell differentiation. Cell reports, v. 37, n. 1,
NAQVI, Afsar Raza et al. The fascinating world of RNA interference. International journal
of biological sciences, v. 5, n. 2, p. 97, 2009.
OW, M. C.; HALL, S. E. piRNAs and endo-siRNAs: Small molecules with large roles in the
nervous system. Neurochem Int., Syracuse, NY, v. 148, 2021.
OZATA, D. M et al. PIWI-interacting RNAs: small RNAs with big functions, Nature
Reviews, Genetics, Londres, v. 20, p. 89-106, 2019.
RAMAT, A.; SIMONELIG, M. Functions of PIWI Proteins in Gene Regulation: New Arrows
Added to the piRNA. Quiver, Trends Genet, Cambridge, v. 37(2), p. 188-200, 2021.
ROJAS-RÍOS, Patricia; SIMONELIG, Martine. piRNAs and PIWI proteins: regulators of
gene expression in development and stem cells. Development, v. 145, n. 17, p. dev161786, 2018.
ROSS, R. J.; WEINER, M. M.; LIN, H. Proteínas PIWI e RNAs que interagem com PIWI no
soma. Nature, Londres, v. 505, p. 353–359, 2014.
SATO, Kaoru; TAKAYAMA, Ken-ichi; INOUE, Satoshi. Role of piRNA biogenesis and its
neuronal function in the development of neurodegenerative diseases. Frontiers in Aging
Neuroscience, v. 15, p. 1157818, 2023.
TAVERNA, Simona; MASUCCI, Anna; CAMMARATA, Giuseppe. PIWI-RNAs Small
Noncoding RNAs with Smart Functions: Potential Theranostic Applications in Cancer. Cancers, v.
, n. 15, p. 3912, 2023.
TYCZEWSKA, Agata et al. The emerging roles of tRNAs and tRNA-derived fragments
during aging: Lessons from studies on model organisms. Ageing Research Reviews, p. 101863,
UNIPROT. UniProtKB: P07901 · HS90A_MOUSE. Disponível em:
https://www.uniprot.org/uniprotkb/P07901/entry. Acesso em: 8 de setembro de 2023.
UNIPROT. UniProtKB: Q9Z204 · HS90A_MOUSE. Disponível em:
https://www.uniprot.org/uniprotkb/Q9Z204/entry. Acesso em: 8 de setembro de 2023.
UNIPROT. UniProtKB: Q9R0Q7 · TEBP_MOUSE. Disponível em:
https://www.uniprot.org/uniprotkb/Q9R0Q7/entry. Acesso em: 8 de setembro de 2023.
UNIPROT. UniProtKB: Q14DK4 · GPAT2_MOUSE. Disponível em:
https://www.uniprot.org/uniprotkb/Q14DK4/entry. Acesso em: 8 de setembro de 2023.
WAKISAKA, K. T., IMAI, Y. The dawn of piRNA research in various neuronal disorders,
Frontiers In Bioscience, Landmark, Kyoto, v. 24, p. 1440-1451, 2019.
WEI, J.-W. et al. RNAs não codificantes como reguladores em epigenética (revisão).
Oncology Reports, Londres, v. 37(1), p. 3-9, 2017.
XU, C.; SUN, S. Expression of Piwi Genes during the Regeneration of Lineus sanguineus
(Nemertea, Pilidiophora, Heteronemertea). GENES, Basel, v. 11 (12), 2020.
Downloads
Published
License
Copyright (c) 2023 RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218
This work is licensed under a Creative Commons Attribution 4.0 International License.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECIMA21, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECIMA21 apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.