PHYSIOPATHOLOGICAL MECHANISMS AND THERAPEUTIC MANAGEMENT IN POLYCYSTIC OVARIAN SYNDROME: A BIBLIOGRAPHIC REVIEW

Authors

DOI:

https://doi.org/10.47820/recima21.v5i4.5094

Keywords:

Polycystic Ovary Syndrome, Pathophysiology, Therapeutics

Abstract

Introduction: Polycystic Ovary Syndrome (PCOS) is a complex endocrine condition that affects women of reproductive age, presenting a wide range of clinical and metabolic manifestations. Objective: to analyze the pathophysiological mechanisms and therapeutic approaches of PCOS, providing an updated synthesis of the scientific literature. Methodology: This is a bibliographic review, using articles present in the following databases: PubMed, Scopus and SciELO. Original articles and systematic reviews in English and Portuguese published between 2013 and 2024 were included, which addressed pathophysiological mechanisms and therapeutic approaches to PCOS. After analysis, 37 articles were selected to prepare this bibliographic review. Results and Discussion: PCOS is a heterogeneous disease characterized by hyperandrogenism, dysfunctional ovulation and polycystic ovarian morphology, accompanied by metabolic abnormalities such as insulin resistance and obesity. Therapeutic approaches for PCOS range from pharmacological interventions to lifestyle modifications. Pharmacological treatments aim to normalize hormone levels, restore ovulation and improve clinical symptoms, including combined oral contraceptives, antiandrogens and insulin sensitizers such as metformin. Conclusion: PCOS remains a challenging condition for patients and healthcare professionals, given its pathophysiological complexity and diverse clinical manifestations.

Downloads

Download data is not yet available.

Author Biographies

Zarife Azevedo Fialho

Instituto de Educação Superior do Vale do Parnaíba-IESVAP.

Mariana de Arruda Frazão

Centro Universitário do Maranhão - Uniceuma.

Thayna Peres Costa

Instituto de Educação Superior do Vale do Parnaíba-IESVAP.

Swelen Thaisi da Costa Silva

Centro Universitário do Maranhão - Uniceuma.

Miguel Ângelo Ibiapina Brito Filho

Centro Universitário Uninovafapi.

Ana Heloisa de Castro Macedo Paes

Centro Universitário Uninovafapi.

Igor de Oliveira Silva

Instituto de Educação Superior do Vale do Parnaíba-IESVAP.

Giovana Sardi de Freitas Alvarez Lopes

Acadêmica de Medicina.

Gabriela Ruiz Prestes

Acadêmica de Medicina.

Cleidyara de Jesus Brito Bacelar Viana Andrade

Acadêmica de Medicina.

References

ABBOTT, David H.; DUMESIC, Daniel A.; LEVINE, Jon E. Hyperandrogenic origins of polycystic ovary syndrome–implications for pathophysiology and therapy. Expert review of endocrinology & metabolismo, v. 14, n. 2, p. 131-143, 2019. DOI: https://doi.org/10.1080/17446651.2019.1576522

AL KHALIFAH, Reem A. et al. Metformin or oral contraceptives for adolescents with polycystic ovarian syndrome: a meta-analysis. Pediatrics, v. 137, n. 5, 2016. DOI: https://doi.org/10.1542/peds.2015-4089

AL WATTAR, Bassel H. et al. Clinical practice guidelines on the diagnosis and management of polycystic ovary syndrome: a systematic review and quality assessment study. The Journal of Clinical Endocrinology & Metabolism, v. 106, n. 8, p. 2436-2446, 2021. DOI: https://doi.org/10.1210/clinem/dgab232

ALESI, Simon et al. Nutritional supplements and complementary therapies in polycystic ovary syndrome. Advances in Nutrition, v. 13, n. 4, p. 1243-1266, 2022. DOI: https://doi.org/10.1093/advances/nmab141

BANNIGIDA, Doddappa M.; NAYAK, B. Shivananda; VIJAYARAGHAVAN, R. Insulin resistance and oxidative marker in women with PCOS. Archives of physiology and biochemistry, v. 126, n. 2, p. 183-186, 2020. DOI: https://doi.org/10.1080/13813455.2018.1499120

BASKIND, N. Ellissa; BALEN, Adam H. Hypothalamic–pituitary, ovarian and adrenal contributions to polycystic ovary syndrome. Best Practice & Research Clinical Obstetrics & Gynaecology, v. 37, p. 80-97, 2016. DOI: https://doi.org/10.1016/j.bpobgyn.2016.03.005

BRENNAN, Leah et al. Lifestyle and behavioral management of polycystic ovary syndrome. Journal of women's health, v. 26, n. 8, p. 836-848, 2017. DOI: https://doi.org/10.1089/jwh.2016.5792

COYLE, Christopher; CAMPBELL, Rebecca E. Pathological pulses in PCOS. Molecular and cellular endocrinology, v. 498, p. 110561, 2019. DOI: https://doi.org/10.1016/j.mce.2019.110561

CREE-GREEN, Melanie et al. Insulin resistance, hyperinsulinemia, and mitochondria dysfunction in nonobese girls with polycystic ovarian syndrome. Journal of the Endocrine Society, v. 1, n. 7, p. 931-944, 2017. DOI: https://doi.org/10.1210/js.2017-00192

DOMECQ, Juan Pablo et al. Lifestyle modification programs in polycystic ovary syndrome: systematic review and meta-analysis. The Journal of Clinical Endocrinology & Metabolism, v. 98, n. 12, p. 4655-4663, 2013. DOI: https://doi.org/10.1210/jc.2013-2385

FENICHEL, Patrick et al. Which origin for polycystic ovaries syndrome: genetic, environmental or both?. Annales d'endocrinologie, p. 176-185, 2017. DOI: https://doi.org/10.1016/j.ando.2017.04.024

FRANKS, S.; HARDY, K. Androgen action in the ovary. Front. Endocrinol., v. 9, p. 452, 2018. DOI: https://doi.org/10.3389/fendo.2018.00452

GANIE, Mohammad Ashraf et al. Epidemiology, pathogenesis, genetics & management of polycystic ovary syndrome in India. Indian Journal of Medical Research, v. 150, n. 4, p. 333-344, 2019. DOI: https://doi.org/10.4103/ijmr.IJMR_1937_17

HOMER, Michael V. et al. Individual 17-hydroxyprogesterone responses to hCG are not correlated with follicle size in polycystic ovary syndrome. Journal of the Endocrine Society, v. 3, n. 4, p. 687-698, 2019. DOI: https://doi.org/10.1210/js.2018-00339

IBÁÑEZ, Lourdes et al. An international consortium update: pathophysiology, diagnosis, and treatment of polycystic ovarian syndrome in adolescence. Hormone research in paediatrics, v. 88, n. 6, p. 371-395, 2017. DOI: https://doi.org/10.1159/000479371

ILIE, Ioana R.; GEORGESCU, Carmen E. Polycystic ovary syndrome-epigenetic mechanisms and aberrant microRNA. Advances in clinical chemistry, v. 71, p. 25-45, 2015. DOI: https://doi.org/10.1016/bs.acc.2015.06.001

KIM, Joon Young et al. Impaired lipolysis, diminished fat oxidation, and metabolic inflexibility in obese girls with polycystic ovary syndrome. The Journal of Clinical Endocrinology & Metabolism, v. 103, n. 2, p. 546-554, 2018. DOI: https://doi.org/10.1210/jc.2017-01958

LI, Yan et al. Multi-system reproductive metabolic disorder: significance for the pathogenesis and therapy of polycystic ovary syndrome (PCOS). Life sciences, v. 228, p. 167-175, 2019. DOI: https://doi.org/10.1016/j.lfs.2019.04.046

LI, Yujing et al. Comparing the individual effects of metformin and rosiglitazone and their combination in obese women with polycystic ovary syndrome: a randomized controlled trial. Fertility and sterility, v. 113, n. 1, p. 197-204, 2020. DOI: https://doi.org/10.1016/j.fertnstert.2019.09.011

LIM, S. S. et al. Metabolic syndrome in polycystic ovary syndrome: a systematic review, meta‐analysis and meta‐regression. Obesity reviews, v. 20, n. 2, p. 339-352, 2019. DOI: https://doi.org/10.1111/obr.12762

LIU, Yishan et al. The release of peripheral immune inflammatory cytokines promote an inflammatory cascade in PCOS patients via altering the follicular microenvironment. Frontiers in immunology, v. 12, p. 685724, 2021. DOI: https://doi.org/10.3389/fimmu.2021.685724

MANCINI, Antonio et al. Oxidative stress and low-grade inflammation in polycystic ovary syndrome: controversies and new insights. International Journal of Molecular Sciences, v. 22, n. 4, p. 1667, 2021. DOI: https://doi.org/10.3390/ijms22041667

MIZGIER, Małgorzata et al. Relation between inflammation, oxidative stress, and macronutrient intakes in normal and excessive body weight adolescent girls with clinical features of polycystic ovary syndrome. Nutrients, v. 13, n. 3, p. 896, 2021. DOI: https://doi.org/10.3390/nu13030896

O’REILLY, Michael W. et al. AKR1C3-mediated adipose androgen generation drives lipotoxicity in women with polycystic ovary syndrome. The Journal of Clinical Endocrinology & Metabolism, v. 102, n. 9, p. 3327-3339, 2017. DOI: https://doi.org/10.1210/jc.2017-00947

RUDDENKLAU, Amy; CAMPBELL, Rebecca E. Neuroendocrine impairments of polycystic ovary syndrome. Endocrinology, v. 160, n. 10, p. 2230-2242, 2019. DOI: https://doi.org/10.1210/en.2019-00428

SADEGHI, Hosna Mohammad et al. Polycystic ovary syndrome: a comprehensive review of pathogenesis, management, and drug repurposing. International journal of molecular sciences, v. 23, n. 2, p. 583, 2022. DOI: https://doi.org/10.3390/ijms23020583

SAMUEL, Varman T. et al. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. The Journal of clinical investigation, v. 126, n. 1, p. 12-22, 2016. DOI: https://doi.org/10.1172/JCI77812

STEPTO, Nigel K. et al. Molecular mechanisms of insulin resistance in polycystic ovary syndrome: unraveling the conundrum in skeletal muscle?. The Journal of Clinical Endocrinology & Metabolism, v. 104, n. 11, p. 5372-5381, 2019. DOI: https://doi.org/10.1210/jc.2019-00167

SZCZUKO, Małgorzata et al. Nutrition strategy and life style in polycystic ovary syndrome—Narrative review. Nutrients, v. 13, n. 7, p. 2452, 2021. DOI: https://doi.org/10.3390/nu13072452

TEEDE, Helena J. et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Human reproduction, v. 33, n. 9, p. 1602-1618, 2018.

WANG, Juan et al. Hyperandrogenemia and insulin resistance: The chief culprit of polycystic ovary syndrome. Life sciences, v. 236, p. 116940, 2019. DOI: https://doi.org/10.1016/j.lfs.2019.116940

Witchel, Selma Feldman et al. “Polycystic Ovary Syndrome: Pathophysiology, Presentation, and Treatment With Emphasis on Adolescent Girls.” Journal of the Endocrine Society, v. 3, n. 8, p. 1545-1573, 14 jun. 2019. DOI: https://doi.org/10.1210/js.2019-00078

ZEIND, Caroline S. et al. Applied therapeutics: the clinical use of drugs. [S. l.]: Lippincott Williams & Wilkins, 2023.

ZHANG, Renjiao et al. Oxidative stress status in Chinese women with different clinical phenotypes of polycystic ovary syndrome. Clinical Endocrinology, v. 86, n. 1, p. 88-96, 2017. DOI: https://doi.org/10.1111/cen.13171

ZHAO, Han et al. Insulin resistance in polycystic ovary syndrome across various tissues: an updated review of pathogenesis, evaluation, and treatment. Journal of Ovarian Research, v. 16, n. 1, p. 9, 2023. DOI: https://doi.org/10.1186/s13048-022-01091-0

ZHU, Daiyu et al. Effects of metformin on pregnancy outcome, metabolic profile, and sex hormone levels in women with polycystic ovary syndrome and their offspring: a systematic review and meta-analysis. Annals of Translational Medicine, v. 10, n. 7, 2022. DOI: https://doi.org/10.21037/atm-22-909

ZHU, Jing-ling et al. Sex hormone-binding globulin and polycystic ovary syndrome. Clinica chimica acta, v. 499, p. 142-148, 2019. DOI: https://doi.org/10.1016/j.cca.2019.09.010

Published

06/04/2024

How to Cite

Azevedo Fialho, Z., de Arruda Frazão, M., Peres Costa, T., Thaisi da Costa Silva, S., Ângelo Ibiapina Brito Filho, M., Heloisa de Castro Macedo Paes, A., … Brito Bacelar Viana Andrade , C. de J. (2024). PHYSIOPATHOLOGICAL MECHANISMS AND THERAPEUTIC MANAGEMENT IN POLYCYSTIC OVARIAN SYNDROME: A BIBLIOGRAPHIC REVIEW. RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 5(4), e545094. https://doi.org/10.47820/recima21.v5i4.5094