LAS FUNCIONES DE LA MICROGLÍA EN LA PROGRESIÓN DEL ASTROCITOMA - ARTÍCULO DE REVISIÓN LITERARIA
DOI:
https://doi.org/10.47820/recima21.v4i11.4286Palabras clave:
Tumor progression, astrocitom, Fenotipo M1 y M2, Mutación genética, progresión tumoralResumen
Este artículo presenta las interacciones entre el glioma conocido como astrocitoma, que tiene 4 grados de malignidad según la OMS, y la célula inmunológica cerebral microglía, así como los mecanismos mediante los cuales esta célula afecta al astrocitoma en su diferenciación fenotípica en antitumoral (M1) y protumoral (M2), así como otros factores que contribuyen a la progresión del tumor, además de las mutaciones en los genes IDH1, IDH2, TP53 y NF1 que pueden desencadenar la formación del astrocitoma. El artículo tiene como objetivo analizar la interacción entre la microglía y el astrocitoma, que es uno de los cánceres cerebrales más comunes, y cómo la célula inmunológica combate la neoplasia a través de ciertos mecanismos y contribuye a la progresión del tumor a través de otros. Como método para analizar este tema, se utilizaron libros electrónicos y artículos científicos nacionales e internacionales indexados en bases de datos como Google Académico, Scielo, PubMed, entre otros, para la elaboración de este trabajo. Los artículos seleccionados se eligieron en función de su desarrollo, resultados y discusiones sobre el tema, con información relevante para el proyecto. Tras el análisis, se pudo establecer la importancia de la mutación genética en las células presentes en la estructura cerebral para desencadenar la neoplasia a partir de la mutación de genes como NF1, IDH1 e IDH2, además de la mutación del gen TP53.
Descargas
Citas
J Tortora G. Princípios de Anatomia Humana. 12a ed. Rio de Janeiro: Guanabara Koogan; 2013. 1110 p.
Ransom BR, Kettenmann H. Electrical coupling, without dye coupling, between mammalian astrocytes and oligodendrocytes in cell culture. Glia [Internet]. 1990
Kettenmann, H. e Ransom, BR (2005) Neuroglia. Oxford University Press Inc., Nova York, 443-450.
Sarlus H, Heneka MT. Microglia in Alzheimer’s disease. J Clin Investig [Internet]. 1 set 2017
Apostolova LG. Alzheimer disease. CONTINUUM [Internet]. Abr 2016
Rasband MN. Glial contributions to neural function and disease. Mol Amp Cell Proteom [Internet]. 4 set 2015
Simons M, Nave KA. Oligodendrocytes: myelination and axonal support. Cold Spring Harb Perspect Biol [Internet]. 22 jun 2015
Wei Z, Fei Y, Su W, Chen G. Emerging role of schwann cells in neuropathic pain: receptors, glial mediators and myelination. Front Cell Neurosci [Internet]. 27 mar 2019
Jäkel S, Dimou L. Glial cells and their function in the adult brain: a journey through the history of their ablation. Front Cell Neurosci [Internet]. 13 fev 2017
Jiménez AJ, Domínguez-Pinos MD, Guerra MM, Fernández-Llebrez P, Pérez-Fígares JM. Structure and function of the ependymal barrier and diseases associated with ependyma disruption. Tissue Barriers [Internet]. Jan 2014
Lo TY, Grandas FG, Jones PA, Chambers IR, Mendelow AD, Forsyth R, Depreitere B, Meyfroidt G, Minns RA. Abstract 10. Pediatr Crit Care Med [Internet]. Maio 2014
Song NJ. A green synthesis of mn3o4/graphene nanocomposite as anode material for lithium-ion batteries. Int J Electrochem Sci [Internet]. Jan 2018
Gorshkov K, Aguisanda F, Thorne N, Zheng W. Astrocytes as targets for drug discovery. Drug Discov Today [Internet]. 2018
Sidoryk-Wegrzynowicz M, Wegrzynowicz M, Lee E, Bowman AB, Aschner M. Role of astrocytes in brain function and disease. Toxicol Pathol [Internet]. 12 nov 2010
Jessen KR. Glial cells. Int J Biochem Amp Cell Biol [Internet]. Out 2004
Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W. K., ... & Ellison, D. W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathologica, (2016) 131(6), 803-820.
Weller, M., Wick, W., & Aldape, K. (2015). Glioma. Nature Reviews Disease Primers, 1, 15017.
Hambardzumyan, D., Gutmann, D. H., & Kettenmann, H. (2016). The role of microglia and macrophages in glioma maintenance and progression. Nature Neuroscience, 19(1), 20-27.
Venkatesh, H. S., Tam L. T., Woo P. J., Lennon J., Nagaraja S., Gillespie S. M., ... & Monje M. (2019). Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature, 10, 1126
Kapoor M, Gupta V. Astrocytoma. 2023 Jul 17. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–. PMID: 32644468.
Kumar, V., Pritzker, D. N., Abbas, A. K., & Aster, J. C. (n.d.). Robbins & Cotran Patologia-Bases Patológicas das Doenças. 9a ed. Rio de Janeiro: Guanabara Koogan; 2021. 1421 p.
Girão Faria MH, Vidal do Patrocínio RM, Barem Rabenhorst SH. Astrocitomas: Uma revisão abrangente. Arq Bras Neurocir [Internet]. Mar 2006
Chen Z, Feng X, Herting CJ, et al. (2017). Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Cancer Res.77(9):2266-2278.
Ron, E., Modan, B., & Boice Jr, J. D. Tumors of the brain and nervous system after radiotherapy in childhood. New England Journal of Medicine. 1988
Loh JK, Lieu AS, Chai CY, Hwang SL, Kwan AL, Wang CJ, Howng SL. Arrested growth and spontaneous tumor regression of partially resected low-grade cerebellar astrocytomas in children. Childs Nerv Syst. 2013
Muller, P. A., & Vousden, K. H. p53 mutations in cancer. Nature Cell Biology. 2014
Watanabe, T. et al. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. The American Journal of Pathology. 2009
ambruzzi E. The role of IDH1/2 mutations in the pathogenesis of secondary glioblastomas. J Bras Patol Medicina Lab [Internet]. 2017
Gutmann, D. H., Ferner, R. E., Listernick, R. H., Korf, B. R., Wolters, P. L., & Johnson, K. J. Neurofibromatosis type 1. Nature Reviews Disease Primers. 2017
Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W. K., ... & Ellison, D. W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathologica. 2016
Watters JJ, Schartner JM, Badie B. Microglia function in brain tumors. J Neurosci Res [Internet]. 1 ago 2005
Graeber MB, Scheithauer BW, Kreutzberg GW. Microglia in brain tumors. Glia [Internet]. 14 out 2002
Wagner S, Czub S, Greif M, Vince GH, Suss N, Kerkau S, Rieckmann P, Roggendorf W, Roosen K, Tonn JC. Microglial/macrophage expression of interleukin 10 in human glioblastomas. Int J Cancer [Internet]. 2 jul 1999
Zeisberger SM, Odermatt B, Marty C, Zehnder-Fjällman AH, Ballmer-Hofer K, Schwendener RA. Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer [Internet]. 11 jul 2006
Leitinger N, Schulman IG. Phenotypic Polarization of Macrophages in Atherosclerosis. Arterioscler Thromb Vasc Biol [Internet]. Jun 2013
Ellert-Miklaszewska A, Dabrowski M, Lipko M, Sliwa M, Maleszewska M, Kaminska B. Molecular definition of the pro-tumorigenic phenotype of glioma-activated microglia. Glia [Internet]. 7 maio 2013
Wei J, Gabrusiewicz K, Heimberger A. The Controversial Role of Microglia in Malignant Gliomas. Clin Dev Immunol [Internet]. 2013
Takeda K, Akira S. STAT family of transcription factors in cytokine-mediated biological responses. Cytokine Amp Growth Factor Rev [Internet]. Set 2000
Ulvestad E, Williams K, Bjerkvig R, Tiekotter K, Antel J, Matre R. Human microglial cells have phenotypic and functional characteristics in common with both macrophages and dendritic antigen-presenting cells. J Leukoc Biol [Internet]. Dez 1994
Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy. Eur J Cancer [Internet]. Abr 2006
Gabrusiewicz K, Ellert-Miklaszewska A, Lipko M, Sielska M, Frankowska M, Kaminska B. Characteristics of the Alternative Phenotype of Microglia/Macrophages and its Modulation in Experimental Gliomas. PLoS ONE [Internet]. 25 ago 2011
Jones LM, Broz ML, Ranger JJ, Ozcelik J, Ahn R, Zuo D, Ursini-Siegel J, Hallett MT, Krummel M, Muller WJ. STAT3 Establishes an Immunosuppressive Microenvironment during the Early Stages of Breast Carcinogenesis to Promote Tumor Growth and Metastasis. Cancer Res [Internet]. 30 dez 2015
Soares AK, Neves PA, Cavalcanti MD, Marinho SM, Oliveira Júnior WD, Souza JR, Lorena VM, Gomes YD. Expression of co-stimulatory molecules CD80 and CD86 is altered in CD14 + HLA-DR + monocytes from patients with Chagas disease following induction by Trypanosoma cruzi recombinant antigens. Rev Soc Bras Medicina Trop [Internet]. Out 2016
Brantley EC, Benveniste EN. Signal Transducer and Activator of Transcription-3: A Molecular Hub for Signaling Pathways in Gliomas. Mol Cancer Res [Internet]. Maio 2008
Kortylewski M, Kujawski M, Wang T, Wei S, Zhang S, Pilon-Thomas S, Niu G, Kay H, Mulé J, Kerr WG, Jove R, Pardoll D, Yu H. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med [Internet]. 20 nov 2005
ZHANG L, HANDEL M, SCHARTNER J, HAGAR A, ALLEN G, CURET M, BADIE B. Regulation of IL-10 expression by upstream stimulating factor (USF-1) in glioma-associated microglia. J Neuroimmunol [Internet]. Mar 2007
Qiu B, Zhang D, Wang C, Tao J, Tie X, Qiao Y, Xu K, Wang Y, Wu A. IL-10 and TGF-β2 are overexpressed in tumor spheres cultured from human gliomas. Mol Biol Rep [Internet]. 19 nov 2010
Leung SY, Wong MP, Chung LP, Chan AS, Yuen ST. Monocyte chemoattractant protein-1 expression and macrophage infiltration in gliomas. Acta Neuropathol [Internet]. 11 maio 1997
Giulian D, Ingeman J. Colony-stimulating factors as promoters of ameboid microglia. J Neurosci [Internet]. 1 dez 1988
Ferretti E, Pistoia V, Corcione A. Role of Fractalkine/CX3CL1 and Its Receptor in the Pathogenesis of Inflammatory and Malignant Diseases with Emphasis on B Cell Malignancies. Mediat Inflamm [Internet]. 2014
Andre F, Cabioglu N, Assi H, Sabourin JC, Delaloge S, Sahin A, Broglio K, Spano JP, Combadiere C, Bucana C, Soria JC, Cristofanilli M. Expression of chemokine receptors predicts the site of metastatic relapse in patients with axillary node positive primary breast cancer. Ann Oncol [Internet]. Jun 2006
Rincón M, Tugores A, López-Rivas A, Silva A, Alonso M, De Landázuri MO, López-Botet M. Prostaglandin E2 and the increase of intracellular cAMP inhibit the expression of interleukin 2 receptors in human T cells. Eur J Immunol [Internet]. Nov 1988
Ye XZ, Xu SL, Xin YH, Yu SC, Ping YF, Chen L, Xiao HL, Wang B, Yi L, Wang QL, Jiang XF, Yang L, Zhang P, Qian C, Cui YH, Zhang X, Bian XW. Tumor-Associated Microglia/Macrophages Enhance the Invasion of Glioma Stem-like Cells via TGF-β1 Signaling Pathway. J Immunol [Internet]. 4 jun 2012
Araújo RV, Silva FO, Melo-Júnior MR, Porto AL. Metaloproteinases: aspectos fisiopatológicos sistêmicos e sua importância na cicatrização. Rev Cienc Medicas Biol [Internet]. 8 jul 2011
Guo P, Imanishi Y, Cackowski FC, Jarzynka MJ, Tao HQ, Nishikawa R, Hirose T, Hu B, Cheng SY. Up-Regulation of Angiopoietin-2, Matrix Metalloprotease-2, Membrane Type 1 Metalloprotease, and Laminin 5 γ 2 Correlates with the Invasiveness of Human Glioma. Am J Pathol [Internet]. Mar 2005
Mayes DA, Hu Y, Teng Y, Siegel E, Wu X, Panda K, Tan F, Yung WK, Zhou YH. PAX6 Suppresses the Invasiveness of Glioblastoma Cells and the Expression of the Matrix Metalloproteinase-2 Gene. Cancer Res [Internet]. 15 out 2006
van den Boorn JG, Daßler J, Coch C, Schlee M, Hartmann G. Exosomes as nucleic acid nanocarriers. Adv Drug Deliv Rev [Internet]. Mar 2013
Denzer K, Kleijmeer MJ, Heijnen HF, Stoorvogel W, Geuze HJ. Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci [Internet]. 1 out 2000
Fang KM, Wang YL, Huang MC, Sun SH, Cheng H, Tzeng SF. Expression of macrophage inflammatory protein-1α and monocyte chemoattractant protein-1 in glioma-infiltrating microglia: Involvement of ATP and P2X7 receptor. J Neurosci Res [Internet]. 8 dez 2010
Wollmer MA, Lucius R, Wilms H, Held-Feindt J, Sievers J, Mentlein R. ATP and adenosine induce ramification of microglia in vitro. J Neuroimmunol [Internet]. Abr 2001
Honda S, Sasaki Y, Ohsawa K, Imai Y, Nakamura Y, Inoue K, Kohsaka S. Extracellular ATP or ADP Induce Chemotaxis of Cultured Microglia through Gi/o-Coupled P2Y Receptors. J Neurosci [Internet]. 15 mar 2001
Csóka B, Selmeczy Z, Koscsó B, Németh ZH, Pacher P, Murray PJ, Kepka‐Lenhart D, Jr SM, Gause WC, Leibovich SJ, Haskó G. Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J [Internet]. 16 set 2011
Haskó G. Adenosine: an endogenous regulator of innate immunity. Trends Immunol [Internet]. Jan 2004
Imura Y, Morizawa Y, Komatsu R, Shibata K, Shinozaki Y, Kasai H, Moriishi K, Moriyama Y, Koizumi S. Microglia release ATP by exocytosis. Glia [Internet]. 5 jul 2013
Jantaratnotai N, Choi HB, McLarnon JG. ATP stimulates chemokine production via a store-operated calcium entry pathway in C6 glioma cells. BMC Cancer [Internet]. Dez 2009
Morrone FB, Horn AP, Stella J, Spiller F, Sarkis JJ, Salbego CG, Lenz G, Battastini AM. Increased resistance of glioma cell lines to extracellular ATP cytotoxicity. J Neuro Oncol [Internet]. Jan 2005
Geribaldi-Doldán N, Fernández-Ponce C, Quiroz RN, Sánchez-Gomar I, Escorcia LG, Velásquez EP, Quiroz EN. The Role of Microglia in Glioblastoma. Front Oncol [Internet]. 29 jan 2021
Descargas
Publicado
Cómo citar
Número
Sección
Categorías
Licencia
Derechos de autor 2023 RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECIMA21, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECIMA21 apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.