ENCOLHIMENTO BAYESIANO DE COEFICIENTES DE ONDALETAS SOB PRIORI DE CHAMPERNOWNE COM APLICAÇÕES
DOI:
https://doi.org/10.47820/recima21.v2i2.112Palavras-chave:
Estatística, Ondaletas, Distribuição de Champernowne, Regressão Não ParamétricaResumo
Métodos estatísticos bayesianos para encolhimento de coeficientes de ondaletas (wavelet shrinkage) têm sido amplamente utilizados em diversas áreas para redução de ruídos em dados. Neste trabalho, propomos uma mistura da função delta de Dirac com a distribuição de Champernowne como distribuição probabilística a priori para os coeficientes das ondaletas em um problema de regressão não paramétrica. A regra bayesiana de encolhimento associada possui parâmetros de fácil interpretação e seu desempenho em estudos de simulação foi superior aos métodos disponíveis na literatura utilizados para comparação na maioria dos cenários considerados. Aplicações do método em dados de potenciais de ação neuronais e do índice da bolsa de valores de São Paulo (IBOVESPA) são feitas.
Downloads
Downloads
Publicado
Edição
Seção
Categorias
Licença
Copyright (c) 2021 RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECIMA21, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECIMA21 apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.