MUSCULOSKELETAL ADAPTATIONS IN LONG-DURATION SPACE MISSIONS: A REVIEW OF ATROPHY AND COUNTERMEASURE STRATEGIES

Autores/as

DOI:

https://doi.org/10.47820/recima21.v6i12.7086

Palabras clave:

Microgravedad Atrofia Muscular Sistema Musculoesquelético.

Resumen

Prolonged exposure to microgravity during long-duration space missions induces profound musculoskeletal adaptations, capable of compromising astronaut health and functional capacity. This study aimed to analyze muscle atrophy and bone loss resulting from staying in space, as well as to review the main countermeasure strategies available. A narrative literature review was conducted using PubMed, Scopus, Web of Science, and NTRS databases, covering observational and longitudinal studies published between 2014 and 2024. Findings indicate a significant reduction in muscle volume—especially in antigravity muscles—and a monthly loss of 1–2% in bone mineral mass. Such changes are associated with the inhibition of anabolic pathways (mTOR/IGF-1), activation of the ubiquitin-proteasome system, and mechanotransduction disturbances in osteocytes. It was observed that currently employed countermeasures, based mainly on resistance exercises and nutritional interventions, attenuate but do not eliminate these deleterious effects. It is concluded that more standardized protocols and new therapeutic approaches are necessary to ensure greater physiological safety in future long-duration space missions.

 

Descargas

Los datos de descarga aún no están disponibles.

Referencias

AVENTAGGIATO, Michele et al. Role of sirt3 in microgravity response: a new player in muscle tissue recovery. Cells (Basel, Switzerland), v. 12, n. 5, p. 691, 2023. DOI: https://doi.org/10.3390/cells12050691

BEAVERS, Kristen M. et al. The bone, exercise, alendronate, and caloric restriction (beacon) trial design and methods. Contemporary Clinical Trials, v. 146, n. 107692, p. 107692, 2024. DOI: https://doi.org/10.1016/j.cct.2024.107692

BOSUTTI, Alessandra. Microgravity-induced changes in skeletal muscle and possible countermeasures. Experimental Physiology, p. 789–799, 2025.

CARNEIRO, José; JUNQUEIRA, Luiz Carlos Uchôa. Histologia Básica. São Paulo: Masson, 2023.

GUYTON, Arthur C.; HALL, John E. Tratado de fisiologia médica. 13. ed. Rio de Janeiro: Elsevier, 2016.

JUHL, O. J.; BUETTMANN, E. G.; FRIEDMAN, M. A. et al. Atualização sobre os efeitos da microgravidade no sistema musculoesquelético. NPJ Microgravity, v. 7, n. 28, 2021. https://doi.org/10.1038/s41526-021-00158-4. DOI: https://doi.org/10.1038/s41526-021-00158-4

KELLER, T. S.; STRAUSS, A. M.; SZPALSKI, M. Prevention of bone loss and muscle atrophy during manned space flight. Microgravity Q, v. 2, n. 2, p. 89–102, 1992.

KIM, S. Skeletal muscle-on-a-chip in microgravity as a platform for regeneration modeling and drug screening. Stem Cell Reports, v. 19. p. 1061–1073, 2024. DOI: https://doi.org/10.1016/j.stemcr.2024.06.010

KORKMAZ, H. Ibrahim et al. The complexity of the post-burn immune response: an overview of the associated local and systemic complications. Cells, (Basel, Switzerland), v. 12, n. 3, p. 345, 2023. DOI: https://doi.org/10.3390/cells12030345

LAPLANTE, Mathieu; SABATINI, David M. Mtor signaling at a glance. Journal of cell science, v. 122, n. 20, p. 3589–3594, 2009. DOI: https://doi.org/10.1242/jcs.051011

LIU, Yizhou et al. Mechanisms and countermeasures for muscle atrophy in microgravity. Cells, (Basel, Switzerland), v. 13, n. 24, p. 2120, 2024. DOI: https://doi.org/10.3390/cells13242120

MAN, Joey et al. The effects of microgravity on bone structure and function. NPJ Microgravity, v. 8, n. 1, 2022. DOI: https://doi.org/10.1038/s41526-022-00194-8

NASA. Counteracting bone and muscle loss in microgravity. [S. L.]: NASA, 1 dez. 2023. Disponível em: https://www.nasa.gov/humans-in-space/counteracting-bone-and-muscle-loss-in-microgravity/. Acesso em: 17 dez. 2024.

PARK, Sung Sup; KWON, Eun-Soo; KWON, Ki-Sun. Molecular mechanisms and therapeutic intervencions in sarcopenia. Osteoporosis and Sarcopenia, v. 3, n. 3, p. 117–122, 2017. DOI: https://doi.org/10.1016/j.afos.2017.08.098

RAJPUT, S.; PREFEITO, I.; DIAMOND, M. et al. Medical ethics of long-duration spaceflight. NPJ Microgravity, v. 9, v. 85, 2023. https://doi.org/10.1038/s41526-023-00333-9 DOI: https://doi.org/10.1038/s41526-023-00333-9

SILVA, Isadora de Carvalho E. et al. Physiological adaptations to life in space: an update. Journal of Aerospace Technology and Management, v. 15, n. e2823, p. e2823, 2023. DOI: https://doi.org/10.1590/jatm.v15.1319

SOCIEDADE BRASILEIRA DE MEDICINA AEROESPACIAL (SBMA). História da medicina aeroespacial. [S. l.]: SBMA, 2022. Disponível em: https://sbma.org.br. Acesso em: 9 maio 2025.

SUN, Zhen. Mechanisms and countermeasures for muscle atrophy in microgravity. NPJ Microgravity, 2023.

TANAKA, Munehiro. Adaptation to microgravity, deconditioning, and countermeasures. NPJ Microgravity, 2016.

UNYLEYAMED. Descubra como a medicina aeroespacial surgiu para proteger os viajantes. Blog Unyleyamed, 2022. Disponível em: https://blog.unyleyamed.com.br/news/como-a-medicina-aeroespacial-surgiu/. Acesso em: 17 dez. 2025.

WANG, Lin. HBMSC-EVS alleviate weightlessness-induced skeletal muscle atrophy. Stem Cell Research & Therapy, 2025.

Publicado

23/12/2025

Cómo citar

MUSCULOSKELETAL ADAPTATIONS IN LONG-DURATION SPACE MISSIONS: A REVIEW OF ATROPHY AND COUNTERMEASURE STRATEGIES. (2025). RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 6(12), e6127086. https://doi.org/10.47820/recima21.v6i12.7086