PERFORMANCE EVALUATION OF DATA MINING ALGORITHMS AND MONTE CARLO SIMULATIONS FOR TREND DISCOVERY IN THE HAMBRE DELIVERY APP

Authors

DOI:

https://doi.org/10.47820/recima21.v6i8.6669

Keywords:

Data Mining, Monte Carlo, Food Service, Knowledge Discovery, Association Rules, Sales Trends

Abstract

The food service sector is experiencing continuous growth, driven by the rise of online shopping. Online shopping streamlines transactions and improves the quality of products and services offered. Digitizing commercial management provides companies with the knowledge necessary to withstand health and economic crises, supported by specialized apps. While the adoption of AI-based tools has changed the way businesses operate, it poses a challenge for smaller, younger companies that do not yet offer online services. Motivated by the need to systematize the analysis of sales trends from partner stores of the Hambre Delivery app, this study proposes a computational performance evaluation solution that combines the Monte Carlo method and data mining algorithms to identify the most appropriate model for strategic sales management support. Through Monte Carlo simulations, the FP‑Growth, FP‑Max, Apriori, and Eclat algorithms were assessed in terms of scalability, execution time, and memory usage. The results showed that the Eclat algorithm is better suited to small, low-complexity data sets. FP-Growth and FP-Max, on the other hand, are scalable and can handle large volumes of data more efficiently in terms of execution time and memory usage. Additionally, the 27 generated association rules revealed relevant trends, showing that applying Monte Carlo results in more accurate and reliable patterns.

Downloads

Download data is not yet available.

Author Biographies

  • Laciene Melo Garcia

    Estudante de Mestrado em Computação Aplicada pelo PPCA/UFPA.

  • Keventon Rian Guimarães Gonçalves

    Bacharel em Sistemas de Informação (UFPA). Professor Substituto na Faculdade de Sistemas de Informação FASI/UFPA.

  • Joiner dos Santos Sá

    Estudante de Doutorado em Engenharia Elétrica pelo PPGEE/UFPA.

  • Elton Rafael Alves

    Doutor em Engenharia Elétrica (UFPA). Professor Adjunto na Faculdade de Engenharia da Computação FAEC/UNIFESSPA.

  • Jasmine Priscyla Leite de Araújo

    Doutora em Engenharia Elétrica. Professora Adjunta do Instituto de Tecnologia ITEC/UFPA.

  • Fabricio de Souza Farias

    Doutor em Engenharia Elétrica. Professor Adjunto na Faculdade de Sistemas de Informação FASI/UFPA.

References

AGRAWAL, R.; IMIELIŃSKI, T.; SWAMI, A. Mining association rules between sets of items in large databases. ACM SIGMOD Record, v. 22, n. 2, p. 207–216, 1993. DOI: https://doi.org/10.1145/170036.170072

BHAGAMPRIYAL, M. et al. Recommendation Systems for Supermarket. 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM). Anais [...] Uttar Pradesh, India: IEEE, 2023.

BUJALANCE-LÓPEZ, L. et al. Restaurant revenue management: a systematic literature review and future challenges. British Food Journal, v. 127, n. 6, p. 2169–2196, 1 abr. 2025. DOI: https://doi.org/10.1108/BFJ-08-2024-0816

CAMPOS, W. P.; FARINA, R. M.; FLORIAN, F. Inteligência Artificial: Machine Learning na Gestão Empresarial. RECIMA21 - Revista Científica Multidisciplinar, v. 3, n. 6, p. e361617, 24 jun. 2022. DOI: https://doi.org/10.47820/recima21.v3i6.1617

CHERNICK, M. R. et al. Bootstrap Methods. In: LOVRIC, M. (Ed.). International Encyclopedia of Statistical Science. Berlin: Springer, 2011. p. 169–174. DOI: https://doi.org/10.1007/978-3-642-04898-2_150

FARIAS, F. et al. Cost- and energy-efficient backhaul options for heterogeneous mobile network deployments. Photonic Network Communications, v. 32, n. 3, p. 422–437, 22 nov. 2016. DOI: https://doi.org/10.1007/s11107-016-0676-6

FAYYAD, U.; PIATETSKY-SHAPIRO, G.; SMYTH, P. From Data Mining to Knowledge Discovery in Databases. AI Magazine, v. 17, n. 3, p. 37–37, 15 mar. 1996.

GONÇALVES, K. R. G. Desenvolvimento e Avaliação do Aplicativo Hambre Delivery: Apresentação do Produto e Análise de Desempenho Usando Inteligência Artificial. Trabalho de Conclusão de Curso (Bacharelado em Sistemas de Informação) – Faculdade de Sistemas de Informação – FASI, Cametá, PA, 2024.

GRAHNE, G.; ZHU, J. Fast algorithms for frequent itemset mining using FP-trees. IEEE Transactions on Knowledge and Data Engineering, v. 17, n. 10, p. 1347–1362, out. 2005. DOI: https://doi.org/10.1109/TKDE.2005.166

GRIJALBA, M. A. et al. Does the use of digital tools improve a firm’s performance? Review of Managerial Science, v. 19, p. 2193–2210, 2 mar. 2024. DOI: https://doi.org/10.1007/s11846-024-00750-4

HAN, J.; KAMBER, M.; PEI, J. Data Mining: Concepts and Techniques. 3. ed. Burlington: Elsevier, 2012.

HASTINGS, W. K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, v. 57, n. 1, p. 97–109, 1 abr. 1970. DOI: https://doi.org/10.1093/biomet/57.1.97

HEIJUNGS, R. On the number of Monte Carlo runs in comparative probabilistic LCA. The International Journal of Life Cycle Assessment, v. 25, n. 2, p. 394–402, 2020. DOI: https://doi.org/10.1007/s11367-019-01698-4

HU, T. et al. Discovery of maximum length frequent itemsets. Information Sciences, v. 178, n. 1, p. 69–87, Jan. 2008. DOI: https://doi.org/10.1016/j.ins.2007.08.006

JOSEPHINE, H.; RAJAN, D. Enhancing Customer Experience and Sales Performance in a Retail Store Using Association Rule Mining and Market Basket Analysis. 14th International Conference on Computing Communication and Networking Technologies (ICCCNT). Anais [...] Delhi, India: IEEE, 2023.

LIN, W.-Y.; TSENG, M.-C.; SU, J.-H. A Confidence-Lift Support Specification for Interesting Associations Mining. Advances in Knowledge Discovery and Data Mining, v. 2336, p. 148–158, 2002. DOI: https://doi.org/10.1007/3-540-47887-6_14

LIU, W. et al. Mobile platform expansion: How does it affect the incumbent food delivery app and other sales channels? Journal of Retailing, v. 100, n. 3, p. 422–438, 1 jun. 2024. DOI: https://doi.org/10.1016/j.jretai.2024.06.002

MADHYASTHA, P.; BATRA, D. On Model Stability as a Function of Random Seed. Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL). Anais [...] Hong Kong: Association for Computational Linguistics, 1 Jan. 2019. DOI: https://doi.org/10.18653/v1/K19-1087

OZEMELA, L. iFood alcança marco histórico de 100 milhões de pedidos em um só mês. [S. l.]: iFood, 2024. Disponível em: https://institucional.ifood.com.br/noticias/ifood-alcanca-marco-historico-de-100-milhoes-de-pedidos-em-um-so-mes/?utm_source=chatgpt.com. Acesso em: 11 abr. 2025

PRADANA, M. R. et al. Market Basket Analysis Using FP-Growth Algorithm on Retail Sales Data. 9th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI). Anais [...] Jakarta, Indonesia: IEEE, 2022. DOI: https://doi.org/10.23919/EECSI56542.2022.9946478

RABHI, F.; BEHESHTI, A.; GILL, A. Editorial: Business transformation through AI-enabled technologies. Frontiers in Artificial Intelligence, v. 8, 11 mar. 2025. DOI: https://doi.org/10.3389/frai.2025.1577540

SISWANTO, B. et al. SDFP-growth Algorithm as a Novelty of Association Rule Mining Optimization. IEEE access, v. 12, p. 21491–21502, 1 Jan. 2024. DOI: https://doi.org/10.1109/ACCESS.2024.3361667

SUMA, D.; SAGAR, L. Data Mining Techniques. Technometrics, v. 48, n. 1, p. 159–160, fev. 2006. DOI: https://doi.org/10.1198/tech.2006.s373

TANAKA, T. et al. Optimality Between Time of Estimation and Reliability of Model Results in the Monte Carlo Method: A Case for a CGE Model. Computational Economics, v. 59, n. 1, p. 151–176, 3 jan. 2021. DOI: https://doi.org/10.1007/s10614-020-10080-8

ZAKI, M. J. et al. New algorithms for fast discovery of association rules. Knowledge Discovery and Data Mining, p. 283–286, 14 ago. 1997. DOI: https://doi.org/10.1007/978-1-4615-5669-5_1

ZAKI, M. J. Scalable algorithms for association mining. IEEE Transactions on Knowledge and Data Engineering, v. 12, n. 3, p. 372–390, 2000. DOI: https://doi.org/10.1109/69.846291

Published

07/08/2025

How to Cite

PERFORMANCE EVALUATION OF DATA MINING ALGORITHMS AND MONTE CARLO SIMULATIONS FOR TREND DISCOVERY IN THE HAMBRE DELIVERY APP. (2025). RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 6(8), e686669. https://doi.org/10.47820/recima21.v6i8.6669