PERFORMANCE EVALUATION OF DATA MINING ALGORITHMS AND MONTE CARLO SIMULATIONS FOR TREND DISCOVERY IN THE HAMBRE DELIVERY APP
DOI:
https://doi.org/10.47820/recima21.v6i8.6669Keywords:
Data Mining, Monte Carlo, Food Service, Knowledge Discovery, Association Rules, Sales TrendsAbstract
The food service sector is experiencing continuous growth, driven by the rise of online shopping. Online shopping streamlines transactions and improves the quality of products and services offered. Digitizing commercial management provides companies with the knowledge necessary to withstand health and economic crises, supported by specialized apps. While the adoption of AI-based tools has changed the way businesses operate, it poses a challenge for smaller, younger companies that do not yet offer online services. Motivated by the need to systematize the analysis of sales trends from partner stores of the Hambre Delivery app, this study proposes a computational performance evaluation solution that combines the Monte Carlo method and data mining algorithms to identify the most appropriate model for strategic sales management support. Through Monte Carlo simulations, the FP‑Growth, FP‑Max, Apriori, and Eclat algorithms were assessed in terms of scalability, execution time, and memory usage. The results showed that the Eclat algorithm is better suited to small, low-complexity data sets. FP-Growth and FP-Max, on the other hand, are scalable and can handle large volumes of data more efficiently in terms of execution time and memory usage. Additionally, the 27 generated association rules revealed relevant trends, showing that applying Monte Carlo results in more accurate and reliable patterns.
Downloads
References
AGRAWAL, R.; IMIELIŃSKI, T.; SWAMI, A. Mining association rules between sets of items in large databases. ACM SIGMOD Record, v. 22, n. 2, p. 207–216, 1993. DOI: https://doi.org/10.1145/170036.170072
BHAGAMPRIYAL, M. et al. Recommendation Systems for Supermarket. 3rd International Conference on Innovative Practices in Technology and Management (ICIPTM). Anais [...] Uttar Pradesh, India: IEEE, 2023.
BUJALANCE-LÓPEZ, L. et al. Restaurant revenue management: a systematic literature review and future challenges. British Food Journal, v. 127, n. 6, p. 2169–2196, 1 abr. 2025. DOI: https://doi.org/10.1108/BFJ-08-2024-0816
CAMPOS, W. P.; FARINA, R. M.; FLORIAN, F. Inteligência Artificial: Machine Learning na Gestão Empresarial. RECIMA21 - Revista Científica Multidisciplinar, v. 3, n. 6, p. e361617, 24 jun. 2022. DOI: https://doi.org/10.47820/recima21.v3i6.1617
CHERNICK, M. R. et al. Bootstrap Methods. In: LOVRIC, M. (Ed.). International Encyclopedia of Statistical Science. Berlin: Springer, 2011. p. 169–174. DOI: https://doi.org/10.1007/978-3-642-04898-2_150
FARIAS, F. et al. Cost- and energy-efficient backhaul options for heterogeneous mobile network deployments. Photonic Network Communications, v. 32, n. 3, p. 422–437, 22 nov. 2016. DOI: https://doi.org/10.1007/s11107-016-0676-6
FAYYAD, U.; PIATETSKY-SHAPIRO, G.; SMYTH, P. From Data Mining to Knowledge Discovery in Databases. AI Magazine, v. 17, n. 3, p. 37–37, 15 mar. 1996.
GONÇALVES, K. R. G. Desenvolvimento e Avaliação do Aplicativo Hambre Delivery: Apresentação do Produto e Análise de Desempenho Usando Inteligência Artificial. Trabalho de Conclusão de Curso (Bacharelado em Sistemas de Informação) – Faculdade de Sistemas de Informação – FASI, Cametá, PA, 2024.
GRAHNE, G.; ZHU, J. Fast algorithms for frequent itemset mining using FP-trees. IEEE Transactions on Knowledge and Data Engineering, v. 17, n. 10, p. 1347–1362, out. 2005. DOI: https://doi.org/10.1109/TKDE.2005.166
GRIJALBA, M. A. et al. Does the use of digital tools improve a firm’s performance? Review of Managerial Science, v. 19, p. 2193–2210, 2 mar. 2024. DOI: https://doi.org/10.1007/s11846-024-00750-4
HAN, J.; KAMBER, M.; PEI, J. Data Mining: Concepts and Techniques. 3. ed. Burlington: Elsevier, 2012.
HASTINGS, W. K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, v. 57, n. 1, p. 97–109, 1 abr. 1970. DOI: https://doi.org/10.1093/biomet/57.1.97
HEIJUNGS, R. On the number of Monte Carlo runs in comparative probabilistic LCA. The International Journal of Life Cycle Assessment, v. 25, n. 2, p. 394–402, 2020. DOI: https://doi.org/10.1007/s11367-019-01698-4
HU, T. et al. Discovery of maximum length frequent itemsets. Information Sciences, v. 178, n. 1, p. 69–87, Jan. 2008. DOI: https://doi.org/10.1016/j.ins.2007.08.006
JOSEPHINE, H.; RAJAN, D. Enhancing Customer Experience and Sales Performance in a Retail Store Using Association Rule Mining and Market Basket Analysis. 14th International Conference on Computing Communication and Networking Technologies (ICCCNT). Anais [...] Delhi, India: IEEE, 2023.
LIN, W.-Y.; TSENG, M.-C.; SU, J.-H. A Confidence-Lift Support Specification for Interesting Associations Mining. Advances in Knowledge Discovery and Data Mining, v. 2336, p. 148–158, 2002. DOI: https://doi.org/10.1007/3-540-47887-6_14
LIU, W. et al. Mobile platform expansion: How does it affect the incumbent food delivery app and other sales channels? Journal of Retailing, v. 100, n. 3, p. 422–438, 1 jun. 2024. DOI: https://doi.org/10.1016/j.jretai.2024.06.002
MADHYASTHA, P.; BATRA, D. On Model Stability as a Function of Random Seed. Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL). Anais [...] Hong Kong: Association for Computational Linguistics, 1 Jan. 2019. DOI: https://doi.org/10.18653/v1/K19-1087
OZEMELA, L. iFood alcança marco histórico de 100 milhões de pedidos em um só mês. [S. l.]: iFood, 2024. Disponível em: https://institucional.ifood.com.br/noticias/ifood-alcanca-marco-historico-de-100-milhoes-de-pedidos-em-um-so-mes/?utm_source=chatgpt.com. Acesso em: 11 abr. 2025
PRADANA, M. R. et al. Market Basket Analysis Using FP-Growth Algorithm on Retail Sales Data. 9th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI). Anais [...] Jakarta, Indonesia: IEEE, 2022. DOI: https://doi.org/10.23919/EECSI56542.2022.9946478
RABHI, F.; BEHESHTI, A.; GILL, A. Editorial: Business transformation through AI-enabled technologies. Frontiers in Artificial Intelligence, v. 8, 11 mar. 2025. DOI: https://doi.org/10.3389/frai.2025.1577540
SISWANTO, B. et al. SDFP-growth Algorithm as a Novelty of Association Rule Mining Optimization. IEEE access, v. 12, p. 21491–21502, 1 Jan. 2024. DOI: https://doi.org/10.1109/ACCESS.2024.3361667
SUMA, D.; SAGAR, L. Data Mining Techniques. Technometrics, v. 48, n. 1, p. 159–160, fev. 2006. DOI: https://doi.org/10.1198/tech.2006.s373
TANAKA, T. et al. Optimality Between Time of Estimation and Reliability of Model Results in the Monte Carlo Method: A Case for a CGE Model. Computational Economics, v. 59, n. 1, p. 151–176, 3 jan. 2021. DOI: https://doi.org/10.1007/s10614-020-10080-8
ZAKI, M. J. et al. New algorithms for fast discovery of association rules. Knowledge Discovery and Data Mining, p. 283–286, 14 ago. 1997. DOI: https://doi.org/10.1007/978-1-4615-5669-5_1
ZAKI, M. J. Scalable algorithms for association mining. IEEE Transactions on Knowledge and Data Engineering, v. 12, n. 3, p. 372–390, 2000. DOI: https://doi.org/10.1109/69.846291
Downloads
Published
License
Copyright (c) 2025 RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218

This work is licensed under a Creative Commons Attribution 4.0 International License.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECIMA21, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECIMA21 apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.