HUMAN MOVEMENT IDENTIFICATION USING WI-FI WITH CHANNEL STATE INFORMATION

Authors

DOI:

https://doi.org/10.47820/recima21.v6i11.6992

Keywords:

Channel State Information, Artificial Intelligence, Processing

Abstract

This research describes the development of a system for the identification of movements using physical information from the Wi-Fi signal, such as amplitude and phase, known as Channel State Information (CSI). Data is captured in a controlled environment using a Raspberry Pi 4 microcomputer with custom firmware and components for the emission and transmission of Wi-Fi signals. Subsequently, the data is classified using Machine Learning models, such as SVM, Random Forest, and KNN. The experimental results demonstrate the capability of the system to detect movements, indicating that CSI is a non-intrusive alternative for movement identification, superior to traditional monitoring methods using images or audio.

Downloads

Download data is not yet available.

Author Biographies

  • Maria Fernanda Cerne Magalhães, UNIARA

    Graduanda em Engenharia da Computação pela Universidade de Araraquara - UNIARA.

  • André Luiz da Silva, UNIARA

    Prof. Dr. na Universidade de Araraquara - UNIARA.

  • Fabiana Florian, UNIARA

    Docente na Universidade de Araraquara - UNIARA. Doutora em Alimentos e Nutrição pela UNESP (FCFAR).

References

DAMODARAN, Neena et al. Device free human activity and fall recognition using WiFi channel state information (CSI). CCF Transactions on Pervasive Computing and Interaction, v. 2, p. 1–17, 2020. Disponível em: https://link.springer.com/article/10.1007/s42486-020-00027-1. Acesso em: 23 fev. 2025. DOI: https://doi.org/10.1007/s42486-020-00027-1

GRINGOLI, Francesco et al. Free your CSI: A channel state information extraction platform for modern Wi-Fi chipsets. In: Proceedings of the 13th International Workshop on Wireless Network Testbeds, Experimental Evaluation & Characterization. 2019. p. 21-28. Disponível em: https://dl.acm.org/doi/10.1145/3349623.3355477. Acesso em: 20 mar. 2025. DOI: https://doi.org/10.1145/3349623.3355477

IBM. O que é aprendizado supervisionado? [S. l.]: IBM, s. d. Disponível em: https://www.ibm.com/br-pt/think/topics/supervised-learning. Acesso em: 8 set. 2025.

IBM. O que é inteligência artificial (IA)? [S. l.]: IBM, s. d.(b). Disponível em: https://www.ibm.com/br-pt/think/topics/artificial-intelligence. Acesso em: 27 ago. 2025.

IMBALANCED-LEARN DEVELOPERS. Imbalanced-learn documentation, [S. l.], 14 ago. 2025. Disponível em: https://imbalanced-learn.org/stable/. Acesso em: 28 set. 2025.

KUROSE, James F.; ROSS, Keith W. Redes de computadores e a internet: uma abordagem top-down. 8. ed. Porto Alegre: Pearson, 2021.

MA, Yongsen; ZHOU, Gang; WANG, Shuangquan. WiFi sensing with channel state information: A survey. ACM Computing Surveys (CSUR), v. 52, n. 3, p. 1–36, 2019. Disponível em: https://dl.acm.org/doi/abs/10.1145/3310194. Acesso em: 25 maio 2025. DOI: https://doi.org/10.1145/3310194

SCHULZ, Matthias; WEGEMER, Daniel; HOLLICK, Matthias. Nexmon: The C-based Firmware Patching Framework. Disponível em: https://nexmon.org. Acesso em: 20 mar. 2025.

TANENBAUM, Andrew S.; FEAMSTER, Nick; WETHERALL, David. Redes de computadores. 6. ed. Porto Alegre: AMGH, 2021.

THE NUMPY DEVELOPERS. NumPy v2.0 Manual. [S. l.]: The Numpy Developers, 2024. Disponível em: https://numpy.org/doc/stable/. Acesso em: 8 set. 2025.

THE PANDAS DEVELOPMENT TEAM. pandas 2.2.2 documentation. [S. l.]: The Pandas Development Team, 2024. Disponível em: https://pandas.pydata.org/docs/. Acesso em: 8 set. 2025.

THE SCIKIT-LEARN DEVELOPERS. scikit-learn 1.5 documentation. [S. l.]: The Scikit-Learn Developers, 2024. Disponível em: https://scikit-learn.org/stable/. Acesso em: 8 set. 2025.

TRINDADE, Eduardo Fabrício Gomes; DE ALMEIDA, Felipe Silveira; PEREIRA JUNIOR, Lourenço Alves Pereira. Além do Sinal: Autenticação Biofísica com Wi-Fi CSI e Raspberry Pi. In: Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg). SBC, 2024. p. 32-47. Disponível em: https://sol.sbc.org.br/index.php/sbseg/article/download/30015/30014/. Acesso em: 05 fev. 2025. DOI: https://doi.org/10.5753/sbseg.2024.241787

WANG, Yuxi; WU, Kaishun; NI, Lionel M. Wifall: Device-free fall detection by wireless networks. IEEE Transactions on Mobile Computing, v. 16, n. 2, p. 581–594, 2016. Disponível em: https://ieeexplore.ieee.org/abstract/document/7458186. Acesso em: 11 mar. 2025. DOI: https://doi.org/10.1109/TMC.2016.2557792

WANG, Zhu et al. Wi-Fi CSI-based behavior recognition: From signals and actions to activities. IEEE Communications Magazine, v. 56, n. 5, p. 109–115, 2018. Disponível em: https://ieeexplore.ieee.org/abstract/document/8360860. Acesso em: 5 fev. 2025. DOI: https://doi.org/10.1109/MCOM.2018.1700144

Published

20/11/2025

How to Cite

HUMAN MOVEMENT IDENTIFICATION USING WI-FI WITH CHANNEL STATE INFORMATION. (2025). RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 6(11), e6116992. https://doi.org/10.47820/recima21.v6i11.6992