DEVELOPMENT OF CHATBOT TO FETCH STUDENTS' ACADEMIC INFORMATION

Authors

DOI:

https://doi.org/10.47820/recima21.v3i12.2364

Keywords:

Chatbot, Educational Institution, Student, Telegram, Python

Abstract

A chatbot is a computer program that interacts with users through language. Processing words, texts, and commands. In the academic sphere, the ecosystem for consulting student information between teaching centers is quite similar, they provide portals where students can consult academic data, such as school reports, registered subjects, and useful telephone numbers. The purpose of this article is to develop a rules-based chatbot to assist students in querying this information. The software was developed using Database, API, Python programming language, Visual Studio Code, and the Telegram messaging application. Among the conclusions, the advantage of providing a new portal using chatbot to consult student information is pointed out, being a platform of easy and quick access, bringing updated information to each line of text typed.

Downloads

Download data is not yet available.

Author Biographies

  • Celso Gil Larussa Filho

    Graduating Bachelor of Information Systems from the University of Araraquara - Uniara

  • João Henrique Gião Borges

    Degree in Computing from the Claretiano University Center. Bachelor in Chemistry from the Universidade Estadual Paulista Júlio de Mesquita Filho, Master in Chemistry from the Federal University of São Carlos and PhD in Organic Chemistry from the University of São Paulo. Professor of the Information Systems Course at the University of Araraquara - UNIARA. Araraquara-SP.

  • Carlos Henrique Macias Porta
    Bachelor of Information Systems with emphasis on Data Science and Business Management. idealized, developed and executed business projects in the areas of marketing and information technology. Solid knowledge of Linux and Android operating systems. Experience in development and maintenance of native applications for Android and hybrid applications for Android, iOS, Linux and Windows. Good knowledge of Python and intermediate understanding of R, Dax, Power Query, Power BI and Machine Learning techniques. Understanding Caffe Framework, Pandas, Anaconda, SQL and NO-SQL. Advanced English and basic French.
  • Fabiana Florian

    Graduated in Economic Sciences, Master in Territorial Development and Environment from the University of Araraquara (UNIARA). PhD in Food and Nutrition from the Faculty of Pharmaceutical Sciences of the São Paulo State University "Júlio de Mesquita Filho" (FCFAR/UNESP) Capes Scholarship holder. Coordinator of Course Completion Works (TCC) of Electrical, Civil, Computing and Information Systems Engineering.

References

FASTAPI. FastAPI docs. 2022. Disponível em: https://fastapi.tiangolo.com/pt/. Acesso em: 26 de maio de 2022.

KHAN, Rashid; DAS, Anik. Build Better Chatbots: A Complete Guide to Getting Started with Chatbots. Bangalore: Apress, 2018. p. 9.

KREIBICH, Jay A. Using SQLite. O’Reilly Media, Inc, ago. 2010. Disponível em: https://www.oreilly.com/library/view/using-sqlite/9781449394592/. Acesso em 16 de novembro de 2022.

PAIVA, Fernando. Mensageria no Brasil Fevereiro de 2022. Mobile time. p. 4-5, fev. 2022. Disponível em: https://www.mobiletime.com.br/pesquisas/mensageria-no-brasil-fevereiro-de-2022/. Acesso em: 10 de abril de 2022.

PAIVA, Fernando. Mapa do Ecossistema Brasileiro de Bots 2021. Mobile Time. p. 3-5, ago. 2021. Disponível em: https://www.mobiletime.com.br/pesquisas/mapa-do-ecossistema-brasileiro-de-bots-2021/. Acesso em: 01 de maio de 2022.

RUBABE, Sabanova. ORM for Python. Medium, out. 2020. Disponível em: https://medium.com/pragmatech/orm-for-python-b63cfbc39e7f. Acesso em 16 de novembro de 2022.

SOUZA, LS d; MORAES, Silvia Maria Wanderley. Construção automática de uma base AIML para chatbot: um estudo baseado na extração de informações a partir de FAQs. Anais do XII ENIAC, p. 137-141, 2015.

SCHLICHT, Matt. The Complete Beginner’s Guide to Chatbots: Everything you need to know. 2016. Disponível em: https://chatbotsmagazine.com/the-complete-beginner-s-guide-to-chatbots-8280b7b906ca. Acesso em: 12 de abril de 2022.

SHAWAR, B. A.; ATWELL, E. (2007). Chatbots: are they really use-ful? Journal for Language Technology and Computational Linguistics, 22:29–49. Disponível em: http://jlcl.org/content/5-allissues/19-Heft1-2007/Bayan_Abu-Shawar_and_Eric_Atwell.pdf.

SWAGGER, OpenAPI Specification. 2022. Disponível em: https://swagger.io/specification/. Acesso em 10 de outubro de 2022.

SQLite. About SQLite. 2022. Disponível em https://www.sqlite.org/about.html. Acesso em 11 de outubro de 2022.

SQLModel, SQLModel. 2022. Disponível em https://sqlmodel.tiangolo.com. Acesso em 14 de outubro de 2022.

TELEGRAM. Telegram FAQ. 2022. Disponível em: https://telegram.org/faq. Acesso em: 15 de maio de 2022.

TURING, A. M. Maquinário computacional e inteligência. In: L. Bonjour; A. Baker (Org.) Filosofia: textos fundamentais comentados. São Paulo: Artmed, 2010. p. 227-231.

WEIZENBAUM, Joseph; ELIZA, Mdash. a Computer Program for the Study of Natural Language Communication Between Man and Machine. Commun ACM, New York, v. 9, n. 1, p. 36–45, Jan. 1966. Disponível em: http://doi.acm.org/10.1145/365153.365168.

ZEMČÍK, Tomáš. A Brief History of Chatbots. DEStech Transactions on Computer Science and Engineering. 2019. Disponível em: https://www.researchgate.net/publication/336734161_A_Brief_History_of_Chatbots.

Published

12/12/2022

How to Cite

DEVELOPMENT OF CHATBOT TO FETCH STUDENTS’ ACADEMIC INFORMATION. (2022). RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 3(12), e3122364. https://doi.org/10.47820/recima21.v3i12.2364