IMPRESSÃO 3D DE BRAÇO ROBÓTICO: REVISÃO SISTEMÁTICA DA LITERATURA
DOI:
https://doi.org/10.47820/recima21.v6i11.6867Palavras-chave:
Impressão 3D, braço robótico, robótica, manufatura aditiva, técnica de impressão 3D, prototipagem rápidaResumo
Esta revisão sistemática buscou analisar as tendencias e as dificuldades do uso da impressão 3D na produção de braços robóticos, a busca inicial encontrou 11.930 estudos, usando um protocolo organizado no programa StArt, esses trabalhos foram filtrados resultando em 30 artigos que atendiam aos critérios definidos. A pesquisa mostrou que a manufatura aditiva é amplamente aplicada na robótica, mas a criação de braços robóticos completos é pouco utilizada, com maior foco no desenvolvimento de peças individuais. Os materiais mais encontrados foram polímeros como PLA e ABS, selecionados por conta do seu baixo custo e facilidade de impressão, geralmente ligados a ambientes educacionais e de prototipagem rápida. Os resultados sugerem a necessidade de estudos mais amplos, com potencial de estimular avanços tecnológicos, educacionais e sustentáveis, alinhados com os Objetivos de Desenvolvimento Sustentável da ONU, como o ODS 4 (Educação de Qualidade) e o ODS 9 (Indústria, Inovação e Infraestrutura).
Downloads
Referências
BARŠI PALMIĆ, Tibor; SLAVIČ, Janko. 3D printed stacked dielectric actuator in a single process. Mechanical Sciences, [s. l.], v. 230, p. 1–14, 2022. DOI: https://doi.org/10.1016/j.ijmecsci.2022.107555. Disponível em: https://www.sciencedirect.com/science/article/pii/S0020740322004489. Acesso em: 6 mar. 2025.
BHATIA, Akash; SEHGAL, Anuj Kumar. Additive manufacturing materials, methods and applications: a review. Materials Today: Proceedings, [s. l.], v. 81, n. 3, p. 1060–1067, 2023. DOI: https://doi.org/10.1016/j.matpr.2021.04.379. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S2214785321032995. Acesso em: 15 mar. 2025.
Goh, Guo Liang; Yeong, Wai Yee; Altherr, Jannick; Tan, Jingyuan; Campolo, Domenico. 3D printing of soft sensors for soft gripper applications. Materials Today: Proceedings, [s. l.], v. 70, p. 224–229, 2022. DOI: https://doi.org/10.1016/j.matpr.2022.09.025. Disponível em: https://www.sciencedirect.com/science/article/pii/S2214785322058187. Acesso em: 25 fev. 2025.
HASAN, Md Hasibul; SAGOR, Jane Alam; AGARWALA, Isheka. A systematic analysis of 3D printing techniques used in specific soft robotic elements. Materials Today: Proceedings, [s. l.], v. 50, p. 1088–1099, 2022. DOI: https://doi.org/10.1016/j.matpr.2021.07.468. Disponível em: https://www.sciencedirect.com/science/article/pii/S2214785321053347. Acesso em: 21 fev. 2025.
JANDYAL, Anketa; CHATURVEDI, Ikshita; WAZIR, Ishika; RAINA, Ankush; UL HAQ, Mir Irfan. 3D printing: a review of processes, materials and applications in Industry 4.0. Sustainable Operations and Computers, [s. l.], v. 3, p. 33–42, 2022. DOI: https://doi.org/10.1016/j.susoc.2021.09.004. Disponível em: https://www.sciencedirect.com/science/article/pii/S2666412721000441. Acesso em: 15 mar. 2025.
KAARTHIK, P.; SANCHEZ, F. L.; AVTGES, J.; TRUBY, R. L. Motorized, untethered soft robots via 3D printed auxetics. Soft Matter, [s. l.], v. 18, n. 43, p. 1–13, 2022. DOI: https://doi.org/10.1039/D2SM00779G. Disponível em: https://pubs.rsc.org/en/content/articlelanding/2022/sm/d2sm00779g. Acesso em: 24 fev. 2025.
KENETH, Ela Sachyani; KAMYSHNY, Alexandre; TOTARO, Massimo; BECCAI, Lúcia; MAGDASSI, Shlomo. 3D printing materials for soft robotics. Advanced Materials, [s. l.], v. 33, n. 19, p. 1–17, 2021. DOI: https://doi.org/10.1002/adma.202003387. Disponível em: https://advanced.onlinelibrary.wiley.com/doi/full/10.1002/adma.202003387. Acesso em: 28 mar. 2025.
KHARAT, Vilas J.; SINGH, Puran; RAJU, G. Sharath; YADAV, Dinesh Kumar; GUPTA, M. Satyanarayana; ARUN, Vanya; MAJEED, Ali Hussein; SINGH, Navdeep. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Materials Today: Proceedings, [s. l.], p. 1–9, 2023. DOI: https://doi.org/10.1016/j.matpr.2023.11.033. Disponível em: https://www.sciencedirect.com/science/article/pii/S2214785323051027. Acesso em: 15 mar. 2025.
KRIMPENIS, Agathoklis; PAPAPASCHOS, Vasileios; BONTARENKO, Evgenios. HydraX: a 3D printed robotic arm for hybrid manufacturing. Part I: customized design, fabrication and assembly. Procedia Manufacturing, [s. l.], v. 51, p. 103–108, 2020. DOI: https://doi.org/10.1016/j.promfg.2020.10.016. Disponível em: https://www.sciencedirect.com/science/article/pii/S2351978920318710. Acesso em: 11 mar. 2025.
LEONG, Zee; CHEN, Rongsheng; XU, Zijie; LIN, Yangsheng; HU, Nan. Robotic arm-based 3D printing and modular construction of a metric-scale lattice façade structure. Engineering Structures, [s. l.], v. 290, p. 1–12, 2023. DOI: https://doi.org/10.1016/j.engstruct.2023.116368. Disponível em: https://www.sciencedirect.com/science/article/pii/S0141029623007836. Acesso em: 15 mar. 2025.
LI, Yixin; WU, Zhenfeng; CHEN, Yufeng; XIAN, Shuai; HONG, Zicun; WANG, Qixin; JIANG, Pei; YU, Haoyong; ZHONG, Yong. Multi-material embedded 3D printing for one-step manufacturing of multifunctional components in soft robotics. Additive Manufacturing, [s. l.], v. 85, p. 1–11, 2024. DOI: https://doi.org/10.1016/j.addma.2024.104178. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S2214860424002240. Acesso em: 23 fev. 2025.
MOURTZIS, Dimitris; ANGELOPOULOS, John; PAPADOKOSTAKIS, Michalis; PANOPOULOS, Nikos. Design for 3D printing of a robotic arm tool changer in the context of Industry 5.0. Procedia CIRP, [s. l.], v. 115, p. 178–183, 2022. DOI: https://doi.org/10.1016/j.procir.2022.10.070. Disponível em: https://www.sciencedirect.com/science/article/pii/S2212827122015050. Acesso em: 15 mar. 2025
OVY, S. M. Al Islam; STANO, Gianni; PERCOCO, Gianluca; CIANCHETTI, Matteo; TADESSE, Yonas. Inexpensive monolithic additive manufacturing of silicone structures for bio-inspired soft robotic systems. Engineering Research Express, [s. l.], v. 5, p. 1–16, 2023. DOI: https://doi.org/10.1088/2631-8695/acb587. Disponível em: https://iopscience.iop.org/article/10.1088/2631-8695/acb587/meta. Acesso em: 26 fev. 2025.
OVY, S. M. Al Islam; STANO, Gianni; PERCOCO, Gianluca; CIANCHETTI, Matteo; TADESSE, Yonas. Inexpensive monolithic additive manufacturing of silicone structures for bio-inspired soft robotic systems. Engineering Research Express, [s. l.], v. 5, p. 1–16, 2023. DOI: https://doi.org/10.1088/2631-8695/acb587. Disponível em: https://iopscience.iop.org/article/10.1088/2631-8695/acb587/meta. Acesso em: 26 fev. 2025.
PARWEEN, Rizuwana; YEH WEN, Tan; RAJESH ELARA, Mohan. Design and validation of a 3D-printed vertical climbing robot for curved surfaces. Materials Today: Proceedings, [s. l.], v. 70, p. 666–672, 2022. DOI: https://doi.org/10.1016/j.matpr.2022.10.067. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S2214785322065609. Acesso em: 12 mar. 2025.
PHAM, Viet-Hung; NGUYEN, Hoa-Cuc; NGUYEN, ND; MACH, B.N; NGUYEN, T.Q. Design and simulation of a wall-climbing robot using 3D printing technology and vacuum method. Advances in Mechanical Engineering, [s. l.], v. 15, n. 7, p. 1–15, 2023. DOI: https://doi.org/10.1177/16878132231186277. Disponível em: https://journals.sagepub.com/doi/full/10.1177/16878132231186277. Acesso em: 3 mar. 2025.
POLLÁK, Martin; KOČIŠKO, Marek; GROZAV, Sorin D.; CECLAN, Vasile; BOGDAN, Alexandru D. Suitability of the UR5 robot for robotic 3D printing. Applied Sciences, [s. l.], v. 14, n. 21, p. 1–19, 2024. DOI: https://doi.org/10.3390/app14219845. Disponível em: https://www.mdpi.com/2076-3417/14/21/9845. Acesso em: 28 fev. 2025.
PRAVEENA, B. A.; LOKESH, N.; BURADI, Abdulrajak; SANTHOSH, N.; PRAVEENA, B. L.; VIGNESH, R. An exhaustive review on emerging additive manufacturing (3D printing) technology: methods, materials, applications, challenges, trends and future potential. Materials Today: Proceedings, [s. l.], v. 52, n. 3, p. 1309–1313, 2022. DOI: https://doi.org/10.1016/j.matpr.2021.11.059. Disponível em: https://www.sciencedirect.com/science/article/pii/S2214785321070632. Acesso em: 12 mar. 2025.
RANJAN, Rajeev; KUMAR, Deepak; KUNDU, Manoj; MOI, Subhash Chandra. A critical review on classification of materials used in 3D printing process. Materials Today: Proceedings, [s. l.], v. 61, n. 1, p. 43–49, 2022. DOI: https://doi.org/10.1016/j.matpr.2022.03.308. Disponível em: https://www.sciencedirect.com/science/article/pii/S2214785322016492. Acesso em: 28 fev. 2025.
ROUF, Saquib; MALIK, Abrar; SINGH, Navdeep; RAINA, Ankush; NAVEED, Nida; SIDDIQUI, Md Irfanul Haque; UL HAQ, Mir Irfan. Additive manufacturing technologies: industrial and medical applications. Sustainable Operations and Computers, [s. l.], v. 3, p. 258–274, 2022. DOI: https://doi.org/10.1016/j.susoc.2022.05.001. Disponível em: https://www.sciencedirect.com/science/article/pii/S2666412722000125. Acesso em: 20 mar. 2025.
SARAN, O. S.; REDDY, U. P.; CHATURYA, L.; KUMAR, M. P. 3D printing of composite materials: a brief review. Materials Today: Proceedings, [s. l.], v. 64, p. 615–619, 2022. DOI: https://doi.org/10.1016/j.matpr.2022.05.144. Disponível em: https://www.sciencedirect.com/science/article/pii/S2214785322034241. Acesso em: 25 mar. 2025.
SIEMASZ, Rafael; TOMCZUK, Krzysztof; MALECHA, Ziemowit. 3D printed robotic arm with artificial intelligence elements. Procedia Computer Science, [s. l.], v. 176, p. 3741–3750, 2020. DOI: https://doi.org/10.1016/j.procs.2020.09.013. Disponível em: https://www.sciencedirect.com/science/article/pii/S1877050920319049. Acesso em: 21 mar. 2025.
STANO, Gianni; ARLEO, Luca; PERCOCO, Gianluca. Additive manufacturing for soft robotics: design and fabrication of sealed monolithic bending PneuNets with integrated air connectors. Micromachines, [s. l.], v. 11, n. 5, p. 1–18, 2020. DOI: https://doi.org/10.3390/mi11050485. Disponível em: https://www.mdpi.com/2072-666X/11/5/485. Acesso em: 21 fev. 2025.
VANNESTE, Félix; GOURY, Olivier; MARTÍNEZ, Jonàs; LEFEBVRE, Sylvain; DELINGETTE, Hervé; DURIEZ, Christian. 3D-printed mesostructured-material-based anisotropic soft robots: design, homogenization modeling and simulation. IEEE Robotics and Automation Letters, [s. l.], v. 5, n. 2, p. 2380–2386, 2020. DOI: https://doi.org/10.1109/LRA.2020.2969926. Disponível em: https://ieeexplore.ieee.org/document/8972411. Acesso em: 11 mar. 2025.
WAN, Jingjing; SUN, Lechen; DU, Tianhao. Design and applications of soft actuators based on 3D printing by digital light processing (DLP). IEEE Access, [s. l.], v. 11, p. 1–16, 2023. DOI: https://doi.org/10.1109/ACCESS.2023.3302920. Disponível em: https://ieeexplore.ieee.org/document/10210379/. Acesso em: 24 fev. 2025.
YEONG, Wai Yee; GOH, Guo Liang; GOH, Guo Dong; LEE, Samuel; ALTHERR, Jannick; TAN, Jingyuan; CAMPOLO, Domenico. 3D printing of soft grippers with multimaterial design: toward shape conformity and tunable stiffness. Materials Today: Proceedings, [s. l.], v. 70, p. 525–530, 2022. DOI: https://doi.org/10.1016/j.matpr.2022.09.552. Disponível em: https://www.sciencedirect.com/science/article/pii/S2214785322063921. Acesso em: 14 mar. 2025.
ZHAN, Shuai; GUO, Amy X. Y.; CAO, Shan Cecilia; LIU, Na. 3D printing of soft materials and their applications: a review. International Journal of Molecular Sciences, [s. l.], v. 23, n. 7, p. 1–13, 2022. DOI: https://doi.org/10.3390/ijms23073790. Disponível em: https://www.mdpi.com/1422-0067/23/7/3790. Acesso em: 28 fev. 2025.
ZHOU, Guo-Xiang; YU, Yan-Ge; YANG, Zhi-Hua; JIA, De-Chang; POULIN, Philippe; ZHOU, Yu; ZHONG, Jing. 3D printing of soft robotics with graphene oxide. ACS Nano, [s. l.], v. 16, p. 3664–3673, 2022. DOI: https://doi.org/10.1021/acsnano.1c06823. Disponível em: https://pubs.acs.org/doi/10.1021/acsnano.1c06823. Acesso em: 13 mar. 2025.
ZOLFAGHARIAN, Ali; LAKHI, Mohammad; RANJBAR, Sadegh; TADESSE, Yonas; BODAGHI, Mahdi. 3D printing of non-assembly joints for soft robotics. Results in Engineering, [s. l.], v. 15, p. 1–10, 2022. DOI: https://doi.org/10.1016/j.rineng.2022.100558. Disponível em: https://www.sciencedirect.com/science/article/pii/S2590123022002286. Acesso em: 27 fev. 2025.
Downloads
Publicado
Licença
Copyright (c) 2025 RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECIMA21, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECIMA21 apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.








