IMPRESIÓN 3D DE BRAZO ROBÓTICO: REVISIÓN SISTEMÁTICA DE LA LITERATURA
DOI:
https://doi.org/10.47820/recima21.v6i11.6867Palabras clave:
Impresión 3D, brazo robótico, robótica, fabricación aditiva, técnica de impresión 3D, prototipado rápidoResumen
Esta revisión sistemática buscó analizar las tendencias y los desafíos del uso de la impresión 3D para producir brazos robóticos. La búsqueda inicial encontró 11,930 estudios. Utilizando un protocolo organizado en el programa StArt, estos estudios fueron filtrados, resultando en 30 artículos que cumplieron con los criterios definidos. La investigación reveló que la fabricación aditiva es ampliamente utilizada en robótica, pero la creación de brazos robóticos completos es poco común, con un mayor enfoque en el desarrollo de piezas individuales. Los materiales más utilizados fueron polímeros como PLA y ABS, seleccionados por su bajo costo y facilidad de impresión, y generalmente se asocian con entornos educativos y prototipado rápido. Los resultados sugieren la necesidad de estudios más amplios con el potencial de estimular avances tecnológicos, educativos y sostenibles, alineados con los Objetivos de Desarrollo Sostenible de la ONU, como el ODS 4 (Educación de Calidad) y el ODS 9 (Industria, Innovación e Infraestructura).
Descargas
Referencias
BARŠI PALMIĆ, Tibor; SLAVIČ, Janko. 3D printed stacked dielectric actuator in a single process. Mechanical Sciences, [s. l.], v. 230, p. 1–14, 2022. DOI: https://doi.org/10.1016/j.ijmecsci.2022.107555. Disponível em: https://www.sciencedirect.com/science/article/pii/S0020740322004489. Acesso em: 6 mar. 2025.
BHATIA, Akash; SEHGAL, Anuj Kumar. Additive manufacturing materials, methods and applications: a review. Materials Today: Proceedings, [s. l.], v. 81, n. 3, p. 1060–1067, 2023. DOI: https://doi.org/10.1016/j.matpr.2021.04.379. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S2214785321032995. Acesso em: 15 mar. 2025.
Goh, Guo Liang; Yeong, Wai Yee; Altherr, Jannick; Tan, Jingyuan; Campolo, Domenico. 3D printing of soft sensors for soft gripper applications. Materials Today: Proceedings, [s. l.], v. 70, p. 224–229, 2022. DOI: https://doi.org/10.1016/j.matpr.2022.09.025. Disponível em: https://www.sciencedirect.com/science/article/pii/S2214785322058187. Acesso em: 25 fev. 2025.
HASAN, Md Hasibul; SAGOR, Jane Alam; AGARWALA, Isheka. A systematic analysis of 3D printing techniques used in specific soft robotic elements. Materials Today: Proceedings, [s. l.], v. 50, p. 1088–1099, 2022. DOI: https://doi.org/10.1016/j.matpr.2021.07.468. Disponível em: https://www.sciencedirect.com/science/article/pii/S2214785321053347. Acesso em: 21 fev. 2025.
JANDYAL, Anketa; CHATURVEDI, Ikshita; WAZIR, Ishika; RAINA, Ankush; UL HAQ, Mir Irfan. 3D printing: a review of processes, materials and applications in Industry 4.0. Sustainable Operations and Computers, [s. l.], v. 3, p. 33–42, 2022. DOI: https://doi.org/10.1016/j.susoc.2021.09.004. Disponível em: https://www.sciencedirect.com/science/article/pii/S2666412721000441. Acesso em: 15 mar. 2025.
KAARTHIK, P.; SANCHEZ, F. L.; AVTGES, J.; TRUBY, R. L. Motorized, untethered soft robots via 3D printed auxetics. Soft Matter, [s. l.], v. 18, n. 43, p. 1–13, 2022. DOI: https://doi.org/10.1039/D2SM00779G. Disponível em: https://pubs.rsc.org/en/content/articlelanding/2022/sm/d2sm00779g. Acesso em: 24 fev. 2025.
KENETH, Ela Sachyani; KAMYSHNY, Alexandre; TOTARO, Massimo; BECCAI, Lúcia; MAGDASSI, Shlomo. 3D printing materials for soft robotics. Advanced Materials, [s. l.], v. 33, n. 19, p. 1–17, 2021. DOI: https://doi.org/10.1002/adma.202003387. Disponível em: https://advanced.onlinelibrary.wiley.com/doi/full/10.1002/adma.202003387. Acesso em: 28 mar. 2025.
KHARAT, Vilas J.; SINGH, Puran; RAJU, G. Sharath; YADAV, Dinesh Kumar; GUPTA, M. Satyanarayana; ARUN, Vanya; MAJEED, Ali Hussein; SINGH, Navdeep. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Materials Today: Proceedings, [s. l.], p. 1–9, 2023. DOI: https://doi.org/10.1016/j.matpr.2023.11.033. Disponível em: https://www.sciencedirect.com/science/article/pii/S2214785323051027. Acesso em: 15 mar. 2025.
KRIMPENIS, Agathoklis; PAPAPASCHOS, Vasileios; BONTARENKO, Evgenios. HydraX: a 3D printed robotic arm for hybrid manufacturing. Part I: customized design, fabrication and assembly. Procedia Manufacturing, [s. l.], v. 51, p. 103–108, 2020. DOI: https://doi.org/10.1016/j.promfg.2020.10.016. Disponível em: https://www.sciencedirect.com/science/article/pii/S2351978920318710. Acesso em: 11 mar. 2025.
LEONG, Zee; CHEN, Rongsheng; XU, Zijie; LIN, Yangsheng; HU, Nan. Robotic arm-based 3D printing and modular construction of a metric-scale lattice façade structure. Engineering Structures, [s. l.], v. 290, p. 1–12, 2023. DOI: https://doi.org/10.1016/j.engstruct.2023.116368. Disponível em: https://www.sciencedirect.com/science/article/pii/S0141029623007836. Acesso em: 15 mar. 2025.
LI, Yixin; WU, Zhenfeng; CHEN, Yufeng; XIAN, Shuai; HONG, Zicun; WANG, Qixin; JIANG, Pei; YU, Haoyong; ZHONG, Yong. Multi-material embedded 3D printing for one-step manufacturing of multifunctional components in soft robotics. Additive Manufacturing, [s. l.], v. 85, p. 1–11, 2024. DOI: https://doi.org/10.1016/j.addma.2024.104178. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S2214860424002240. Acesso em: 23 fev. 2025.
MOURTZIS, Dimitris; ANGELOPOULOS, John; PAPADOKOSTAKIS, Michalis; PANOPOULOS, Nikos. Design for 3D printing of a robotic arm tool changer in the context of Industry 5.0. Procedia CIRP, [s. l.], v. 115, p. 178–183, 2022. DOI: https://doi.org/10.1016/j.procir.2022.10.070. Disponível em: https://www.sciencedirect.com/science/article/pii/S2212827122015050. Acesso em: 15 mar. 2025
OVY, S. M. Al Islam; STANO, Gianni; PERCOCO, Gianluca; CIANCHETTI, Matteo; TADESSE, Yonas. Inexpensive monolithic additive manufacturing of silicone structures for bio-inspired soft robotic systems. Engineering Research Express, [s. l.], v. 5, p. 1–16, 2023. DOI: https://doi.org/10.1088/2631-8695/acb587. Disponível em: https://iopscience.iop.org/article/10.1088/2631-8695/acb587/meta. Acesso em: 26 fev. 2025.
OVY, S. M. Al Islam; STANO, Gianni; PERCOCO, Gianluca; CIANCHETTI, Matteo; TADESSE, Yonas. Inexpensive monolithic additive manufacturing of silicone structures for bio-inspired soft robotic systems. Engineering Research Express, [s. l.], v. 5, p. 1–16, 2023. DOI: https://doi.org/10.1088/2631-8695/acb587. Disponível em: https://iopscience.iop.org/article/10.1088/2631-8695/acb587/meta. Acesso em: 26 fev. 2025.
PARWEEN, Rizuwana; YEH WEN, Tan; RAJESH ELARA, Mohan. Design and validation of a 3D-printed vertical climbing robot for curved surfaces. Materials Today: Proceedings, [s. l.], v. 70, p. 666–672, 2022. DOI: https://doi.org/10.1016/j.matpr.2022.10.067. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S2214785322065609. Acesso em: 12 mar. 2025.
PHAM, Viet-Hung; NGUYEN, Hoa-Cuc; NGUYEN, ND; MACH, B.N; NGUYEN, T.Q. Design and simulation of a wall-climbing robot using 3D printing technology and vacuum method. Advances in Mechanical Engineering, [s. l.], v. 15, n. 7, p. 1–15, 2023. DOI: https://doi.org/10.1177/16878132231186277. Disponível em: https://journals.sagepub.com/doi/full/10.1177/16878132231186277. Acesso em: 3 mar. 2025.
POLLÁK, Martin; KOČIŠKO, Marek; GROZAV, Sorin D.; CECLAN, Vasile; BOGDAN, Alexandru D. Suitability of the UR5 robot for robotic 3D printing. Applied Sciences, [s. l.], v. 14, n. 21, p. 1–19, 2024. DOI: https://doi.org/10.3390/app14219845. Disponível em: https://www.mdpi.com/2076-3417/14/21/9845. Acesso em: 28 fev. 2025.
PRAVEENA, B. A.; LOKESH, N.; BURADI, Abdulrajak; SANTHOSH, N.; PRAVEENA, B. L.; VIGNESH, R. An exhaustive review on emerging additive manufacturing (3D printing) technology: methods, materials, applications, challenges, trends and future potential. Materials Today: Proceedings, [s. l.], v. 52, n. 3, p. 1309–1313, 2022. DOI: https://doi.org/10.1016/j.matpr.2021.11.059. Disponível em: https://www.sciencedirect.com/science/article/pii/S2214785321070632. Acesso em: 12 mar. 2025.
RANJAN, Rajeev; KUMAR, Deepak; KUNDU, Manoj; MOI, Subhash Chandra. A critical review on classification of materials used in 3D printing process. Materials Today: Proceedings, [s. l.], v. 61, n. 1, p. 43–49, 2022. DOI: https://doi.org/10.1016/j.matpr.2022.03.308. Disponível em: https://www.sciencedirect.com/science/article/pii/S2214785322016492. Acesso em: 28 fev. 2025.
ROUF, Saquib; MALIK, Abrar; SINGH, Navdeep; RAINA, Ankush; NAVEED, Nida; SIDDIQUI, Md Irfanul Haque; UL HAQ, Mir Irfan. Additive manufacturing technologies: industrial and medical applications. Sustainable Operations and Computers, [s. l.], v. 3, p. 258–274, 2022. DOI: https://doi.org/10.1016/j.susoc.2022.05.001. Disponível em: https://www.sciencedirect.com/science/article/pii/S2666412722000125. Acesso em: 20 mar. 2025.
SARAN, O. S.; REDDY, U. P.; CHATURYA, L.; KUMAR, M. P. 3D printing of composite materials: a brief review. Materials Today: Proceedings, [s. l.], v. 64, p. 615–619, 2022. DOI: https://doi.org/10.1016/j.matpr.2022.05.144. Disponível em: https://www.sciencedirect.com/science/article/pii/S2214785322034241. Acesso em: 25 mar. 2025.
SIEMASZ, Rafael; TOMCZUK, Krzysztof; MALECHA, Ziemowit. 3D printed robotic arm with artificial intelligence elements. Procedia Computer Science, [s. l.], v. 176, p. 3741–3750, 2020. DOI: https://doi.org/10.1016/j.procs.2020.09.013. Disponível em: https://www.sciencedirect.com/science/article/pii/S1877050920319049. Acesso em: 21 mar. 2025.
STANO, Gianni; ARLEO, Luca; PERCOCO, Gianluca. Additive manufacturing for soft robotics: design and fabrication of sealed monolithic bending PneuNets with integrated air connectors. Micromachines, [s. l.], v. 11, n. 5, p. 1–18, 2020. DOI: https://doi.org/10.3390/mi11050485. Disponível em: https://www.mdpi.com/2072-666X/11/5/485. Acesso em: 21 fev. 2025.
VANNESTE, Félix; GOURY, Olivier; MARTÍNEZ, Jonàs; LEFEBVRE, Sylvain; DELINGETTE, Hervé; DURIEZ, Christian. 3D-printed mesostructured-material-based anisotropic soft robots: design, homogenization modeling and simulation. IEEE Robotics and Automation Letters, [s. l.], v. 5, n. 2, p. 2380–2386, 2020. DOI: https://doi.org/10.1109/LRA.2020.2969926. Disponível em: https://ieeexplore.ieee.org/document/8972411. Acesso em: 11 mar. 2025.
WAN, Jingjing; SUN, Lechen; DU, Tianhao. Design and applications of soft actuators based on 3D printing by digital light processing (DLP). IEEE Access, [s. l.], v. 11, p. 1–16, 2023. DOI: https://doi.org/10.1109/ACCESS.2023.3302920. Disponível em: https://ieeexplore.ieee.org/document/10210379/. Acesso em: 24 fev. 2025.
YEONG, Wai Yee; GOH, Guo Liang; GOH, Guo Dong; LEE, Samuel; ALTHERR, Jannick; TAN, Jingyuan; CAMPOLO, Domenico. 3D printing of soft grippers with multimaterial design: toward shape conformity and tunable stiffness. Materials Today: Proceedings, [s. l.], v. 70, p. 525–530, 2022. DOI: https://doi.org/10.1016/j.matpr.2022.09.552. Disponível em: https://www.sciencedirect.com/science/article/pii/S2214785322063921. Acesso em: 14 mar. 2025.
ZHAN, Shuai; GUO, Amy X. Y.; CAO, Shan Cecilia; LIU, Na. 3D printing of soft materials and their applications: a review. International Journal of Molecular Sciences, [s. l.], v. 23, n. 7, p. 1–13, 2022. DOI: https://doi.org/10.3390/ijms23073790. Disponível em: https://www.mdpi.com/1422-0067/23/7/3790. Acesso em: 28 fev. 2025.
ZHOU, Guo-Xiang; YU, Yan-Ge; YANG, Zhi-Hua; JIA, De-Chang; POULIN, Philippe; ZHOU, Yu; ZHONG, Jing. 3D printing of soft robotics with graphene oxide. ACS Nano, [s. l.], v. 16, p. 3664–3673, 2022. DOI: https://doi.org/10.1021/acsnano.1c06823. Disponível em: https://pubs.acs.org/doi/10.1021/acsnano.1c06823. Acesso em: 13 mar. 2025.
ZOLFAGHARIAN, Ali; LAKHI, Mohammad; RANJBAR, Sadegh; TADESSE, Yonas; BODAGHI, Mahdi. 3D printing of non-assembly joints for soft robotics. Results in Engineering, [s. l.], v. 15, p. 1–10, 2022. DOI: https://doi.org/10.1016/j.rineng.2022.100558. Disponível em: https://www.sciencedirect.com/science/article/pii/S2590123022002286. Acesso em: 27 fev. 2025.
Descargas
Publicado
Licencia
Derechos de autor 2025 RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECIMA21, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECIMA21 apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.








