3D PRINTING OF ROBOTIC ARM: A SYSTEMATIC LITERATURE REVIEW

Authors

DOI:

https://doi.org/10.47820/recima21.v6i11.6867

Keywords:

3D printing, robotic arm, robotics, additive manufacturing, 3D printing technique, rapid prototyping

Abstract

This systematic review sought to analyze the trends and challenges of using 3D printing to produce robotic arms. The initial search found 11,930 studies. Using a protocol organized in the StArt program, these studies were filtered, resulting in 30 articles that met the defined criteria. The research revealed that additive manufacturing is widely used in robotics, but the creation of complete robotic arms is rare, with a greater focus on the development of individual parts. The most frequently used materials were polymers such as PLA and ABS, selected for their low cost and ease of printing, and are generally associated with educational environments and rapid prototyping. The results suggest the need for broader studies with the potential to stimulate technological, educational, and sustainable advances, aligned with the UN Sustainable Development Goals, such as SDG 4 (Quality Education) and SDG 9 (Industry, Innovation, and Infrastructure). 

Downloads

Download data is not yet available.

Author Biographies

  • Roger Serafim Raimundo

    UNESP – Universidade Estadual Paulista “Júlio de Mesquita Filho”.

  • Paulo Sérgio Barbosa dos Santos

    UNESP – Universidade Estadual Paulista “Júlio de Mesquita Filho”.

References

BARŠI PALMIĆ, Tibor; SLAVIČ, Janko. 3D printed stacked dielectric actuator in a single process. Mechanical Sciences, [s. l.], v. 230, p. 1–14, 2022. DOI: https://doi.org/10.1016/j.ijmecsci.2022.107555. Disponível em: https://www.sciencedirect.com/science/article/pii/S0020740322004489. Acesso em: 6 mar. 2025.

BHATIA, Akash; SEHGAL, Anuj Kumar. Additive manufacturing materials, methods and applications: a review. Materials Today: Proceedings, [s. l.], v. 81, n. 3, p. 1060–1067, 2023. DOI: https://doi.org/10.1016/j.matpr.2021.04.379. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S2214785321032995. Acesso em: 15 mar. 2025.

Goh, Guo Liang; Yeong, Wai Yee; Altherr, Jannick; Tan, Jingyuan; Campolo, Domenico. 3D printing of soft sensors for soft gripper applications. Materials Today: Proceedings, [s. l.], v. 70, p. 224–229, 2022. DOI: https://doi.org/10.1016/j.matpr.2022.09.025. Disponível em: https://www.sciencedirect.com/science/article/pii/S2214785322058187. Acesso em: 25 fev. 2025.

HASAN, Md Hasibul; SAGOR, Jane Alam; AGARWALA, Isheka. A systematic analysis of 3D printing techniques used in specific soft robotic elements. Materials Today: Proceedings, [s. l.], v. 50, p. 1088–1099, 2022. DOI: https://doi.org/10.1016/j.matpr.2021.07.468. Disponível em: https://www.sciencedirect.com/science/article/pii/S2214785321053347. Acesso em: 21 fev. 2025.

JANDYAL, Anketa; CHATURVEDI, Ikshita; WAZIR, Ishika; RAINA, Ankush; UL HAQ, Mir Irfan. 3D printing: a review of processes, materials and applications in Industry 4.0. Sustainable Operations and Computers, [s. l.], v. 3, p. 33–42, 2022. DOI: https://doi.org/10.1016/j.susoc.2021.09.004. Disponível em: https://www.sciencedirect.com/science/article/pii/S2666412721000441. Acesso em: 15 mar. 2025.

KAARTHIK, P.; SANCHEZ, F. L.; AVTGES, J.; TRUBY, R. L. Motorized, untethered soft robots via 3D printed auxetics. Soft Matter, [s. l.], v. 18, n. 43, p. 1–13, 2022. DOI: https://doi.org/10.1039/D2SM00779G. Disponível em: https://pubs.rsc.org/en/content/articlelanding/2022/sm/d2sm00779g. Acesso em: 24 fev. 2025.

KENETH, Ela Sachyani; KAMYSHNY, Alexandre; TOTARO, Massimo; BECCAI, Lúcia; MAGDASSI, Shlomo. 3D printing materials for soft robotics. Advanced Materials, [s. l.], v. 33, n. 19, p. 1–17, 2021. DOI: https://doi.org/10.1002/adma.202003387. Disponível em: https://advanced.onlinelibrary.wiley.com/doi/full/10.1002/adma.202003387. Acesso em: 28 mar. 2025.

KHARAT, Vilas J.; SINGH, Puran; RAJU, G. Sharath; YADAV, Dinesh Kumar; GUPTA, M. Satyanarayana; ARUN, Vanya; MAJEED, Ali Hussein; SINGH, Navdeep. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Materials Today: Proceedings, [s. l.], p. 1–9, 2023. DOI: https://doi.org/10.1016/j.matpr.2023.11.033. Disponível em: https://www.sciencedirect.com/science/article/pii/S2214785323051027. Acesso em: 15 mar. 2025.

KRIMPENIS, Agathoklis; PAPAPASCHOS, Vasileios; BONTARENKO, Evgenios. HydraX: a 3D printed robotic arm for hybrid manufacturing. Part I: customized design, fabrication and assembly. Procedia Manufacturing, [s. l.], v. 51, p. 103–108, 2020. DOI: https://doi.org/10.1016/j.promfg.2020.10.016. Disponível em: https://www.sciencedirect.com/science/article/pii/S2351978920318710. Acesso em: 11 mar. 2025.

LEONG, Zee; CHEN, Rongsheng; XU, Zijie; LIN, Yangsheng; HU, Nan. Robotic arm-based 3D printing and modular construction of a metric-scale lattice façade structure. Engineering Structures, [s. l.], v. 290, p. 1–12, 2023. DOI: https://doi.org/10.1016/j.engstruct.2023.116368. Disponível em: https://www.sciencedirect.com/science/article/pii/S0141029623007836. Acesso em: 15 mar. 2025.

LI, Yixin; WU, Zhenfeng; CHEN, Yufeng; XIAN, Shuai; HONG, Zicun; WANG, Qixin; JIANG, Pei; YU, Haoyong; ZHONG, Yong. Multi-material embedded 3D printing for one-step manufacturing of multifunctional components in soft robotics. Additive Manufacturing, [s. l.], v. 85, p. 1–11, 2024. DOI: https://doi.org/10.1016/j.addma.2024.104178. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S2214860424002240. Acesso em: 23 fev. 2025.

MOURTZIS, Dimitris; ANGELOPOULOS, John; PAPADOKOSTAKIS, Michalis; PANOPOULOS, Nikos. Design for 3D printing of a robotic arm tool changer in the context of Industry 5.0. Procedia CIRP, [s. l.], v. 115, p. 178–183, 2022. DOI: https://doi.org/10.1016/j.procir.2022.10.070. Disponível em: https://www.sciencedirect.com/science/article/pii/S2212827122015050. Acesso em: 15 mar. 2025

OVY, S. M. Al Islam; STANO, Gianni; PERCOCO, Gianluca; CIANCHETTI, Matteo; TADESSE, Yonas. Inexpensive monolithic additive manufacturing of silicone structures for bio-inspired soft robotic systems. Engineering Research Express, [s. l.], v. 5, p. 1–16, 2023. DOI: https://doi.org/10.1088/2631-8695/acb587. Disponível em: https://iopscience.iop.org/article/10.1088/2631-8695/acb587/meta. Acesso em: 26 fev. 2025.

OVY, S. M. Al Islam; STANO, Gianni; PERCOCO, Gianluca; CIANCHETTI, Matteo; TADESSE, Yonas. Inexpensive monolithic additive manufacturing of silicone structures for bio-inspired soft robotic systems. Engineering Research Express, [s. l.], v. 5, p. 1–16, 2023. DOI: https://doi.org/10.1088/2631-8695/acb587. Disponível em: https://iopscience.iop.org/article/10.1088/2631-8695/acb587/meta. Acesso em: 26 fev. 2025.

PARWEEN, Rizuwana; YEH WEN, Tan; RAJESH ELARA, Mohan. Design and validation of a 3D-printed vertical climbing robot for curved surfaces. Materials Today: Proceedings, [s. l.], v. 70, p. 666–672, 2022. DOI: https://doi.org/10.1016/j.matpr.2022.10.067. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S2214785322065609. Acesso em: 12 mar. 2025.

PHAM, Viet-Hung; NGUYEN, Hoa-Cuc; NGUYEN, ND; MACH, B.N; NGUYEN, T.Q. Design and simulation of a wall-climbing robot using 3D printing technology and vacuum method. Advances in Mechanical Engineering, [s. l.], v. 15, n. 7, p. 1–15, 2023. DOI: https://doi.org/10.1177/16878132231186277. Disponível em: https://journals.sagepub.com/doi/full/10.1177/16878132231186277. Acesso em: 3 mar. 2025.

POLLÁK, Martin; KOČIŠKO, Marek; GROZAV, Sorin D.; CECLAN, Vasile; BOGDAN, Alexandru D. Suitability of the UR5 robot for robotic 3D printing. Applied Sciences, [s. l.], v. 14, n. 21, p. 1–19, 2024. DOI: https://doi.org/10.3390/app14219845. Disponível em: https://www.mdpi.com/2076-3417/14/21/9845. Acesso em: 28 fev. 2025.

PRAVEENA, B. A.; LOKESH, N.; BURADI, Abdulrajak; SANTHOSH, N.; PRAVEENA, B. L.; VIGNESH, R. An exhaustive review on emerging additive manufacturing (3D printing) technology: methods, materials, applications, challenges, trends and future potential. Materials Today: Proceedings, [s. l.], v. 52, n. 3, p. 1309–1313, 2022. DOI: https://doi.org/10.1016/j.matpr.2021.11.059. Disponível em: https://www.sciencedirect.com/science/article/pii/S2214785321070632. Acesso em: 12 mar. 2025.

RANJAN, Rajeev; KUMAR, Deepak; KUNDU, Manoj; MOI, Subhash Chandra. A critical review on classification of materials used in 3D printing process. Materials Today: Proceedings, [s. l.], v. 61, n. 1, p. 43–49, 2022. DOI: https://doi.org/10.1016/j.matpr.2022.03.308. Disponível em: https://www.sciencedirect.com/science/article/pii/S2214785322016492. Acesso em: 28 fev. 2025.

ROUF, Saquib; MALIK, Abrar; SINGH, Navdeep; RAINA, Ankush; NAVEED, Nida; SIDDIQUI, Md Irfanul Haque; UL HAQ, Mir Irfan. Additive manufacturing technologies: industrial and medical applications. Sustainable Operations and Computers, [s. l.], v. 3, p. 258–274, 2022. DOI: https://doi.org/10.1016/j.susoc.2022.05.001. Disponível em: https://www.sciencedirect.com/science/article/pii/S2666412722000125. Acesso em: 20 mar. 2025.

SARAN, O. S.; REDDY, U. P.; CHATURYA, L.; KUMAR, M. P. 3D printing of composite materials: a brief review. Materials Today: Proceedings, [s. l.], v. 64, p. 615–619, 2022. DOI: https://doi.org/10.1016/j.matpr.2022.05.144. Disponível em: https://www.sciencedirect.com/science/article/pii/S2214785322034241. Acesso em: 25 mar. 2025.

SIEMASZ, Rafael; TOMCZUK, Krzysztof; MALECHA, Ziemowit. 3D printed robotic arm with artificial intelligence elements. Procedia Computer Science, [s. l.], v. 176, p. 3741–3750, 2020. DOI: https://doi.org/10.1016/j.procs.2020.09.013. Disponível em: https://www.sciencedirect.com/science/article/pii/S1877050920319049. Acesso em: 21 mar. 2025.

STANO, Gianni; ARLEO, Luca; PERCOCO, Gianluca. Additive manufacturing for soft robotics: design and fabrication of sealed monolithic bending PneuNets with integrated air connectors. Micromachines, [s. l.], v. 11, n. 5, p. 1–18, 2020. DOI: https://doi.org/10.3390/mi11050485. Disponível em: https://www.mdpi.com/2072-666X/11/5/485. Acesso em: 21 fev. 2025.

VANNESTE, Félix; GOURY, Olivier; MARTÍNEZ, Jonàs; LEFEBVRE, Sylvain; DELINGETTE, Hervé; DURIEZ, Christian. 3D-printed mesostructured-material-based anisotropic soft robots: design, homogenization modeling and simulation. IEEE Robotics and Automation Letters, [s. l.], v. 5, n. 2, p. 2380–2386, 2020. DOI: https://doi.org/10.1109/LRA.2020.2969926. Disponível em: https://ieeexplore.ieee.org/document/8972411. Acesso em: 11 mar. 2025.

WAN, Jingjing; SUN, Lechen; DU, Tianhao. Design and applications of soft actuators based on 3D printing by digital light processing (DLP). IEEE Access, [s. l.], v. 11, p. 1–16, 2023. DOI: https://doi.org/10.1109/ACCESS.2023.3302920. Disponível em: https://ieeexplore.ieee.org/document/10210379/. Acesso em: 24 fev. 2025.

YEONG, Wai Yee; GOH, Guo Liang; GOH, Guo Dong; LEE, Samuel; ALTHERR, Jannick; TAN, Jingyuan; CAMPOLO, Domenico. 3D printing of soft grippers with multimaterial design: toward shape conformity and tunable stiffness. Materials Today: Proceedings, [s. l.], v. 70, p. 525–530, 2022. DOI: https://doi.org/10.1016/j.matpr.2022.09.552. Disponível em: https://www.sciencedirect.com/science/article/pii/S2214785322063921. Acesso em: 14 mar. 2025.

ZHAN, Shuai; GUO, Amy X. Y.; CAO, Shan Cecilia; LIU, Na. 3D printing of soft materials and their applications: a review. International Journal of Molecular Sciences, [s. l.], v. 23, n. 7, p. 1–13, 2022. DOI: https://doi.org/10.3390/ijms23073790. Disponível em: https://www.mdpi.com/1422-0067/23/7/3790. Acesso em: 28 fev. 2025.

ZHOU, Guo-Xiang; YU, Yan-Ge; YANG, Zhi-Hua; JIA, De-Chang; POULIN, Philippe; ZHOU, Yu; ZHONG, Jing. 3D printing of soft robotics with graphene oxide. ACS Nano, [s. l.], v. 16, p. 3664–3673, 2022. DOI: https://doi.org/10.1021/acsnano.1c06823. Disponível em: https://pubs.acs.org/doi/10.1021/acsnano.1c06823. Acesso em: 13 mar. 2025.

ZOLFAGHARIAN, Ali; LAKHI, Mohammad; RANJBAR, Sadegh; TADESSE, Yonas; BODAGHI, Mahdi. 3D printing of non-assembly joints for soft robotics. Results in Engineering, [s. l.], v. 15, p. 1–10, 2022. DOI: https://doi.org/10.1016/j.rineng.2022.100558. Disponível em: https://www.sciencedirect.com/science/article/pii/S2590123022002286. Acesso em: 27 fev. 2025.

Published

13/11/2025

How to Cite

3D PRINTING OF ROBOTIC ARM: A SYSTEMATIC LITERATURE REVIEW. (2025). RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 6(11), e6116867. https://doi.org/10.47820/recima21.v6i11.6867