APPLICATIONS OF ARTIFICIAL INTELLIGENCE IN CARDIAC IMAGING EXAMS (ECHOCARDIOGRAPHY AND CORONARY CT ANGIOGRAPHY): ACCURACY, CLINICAL FEASIBILITY, AND ALGORITHMIC BIASES – AN INTEGRATIVE REVIEW

Authors

DOI:

https://doi.org/10.47820/recima21.v7i1.7150

Keywords:

Artificial Intelligence, Echocardiography, Coronary Angiography

Abstract

Cardiovascular diseases (CVD) remain the leading cause of global morbidity and mortality, requiring accurate and scalable diagnostic strategies. Artificial intelligence (AI), through deep learning algorithms, emerges as a disruptive technology for medical image analysis. This integrative review aimed to evaluate the impact of AI on the interpretation of echocardiography and coronary computed tomography angiography (CTA), analyzing diagnostic accuracy, clinical feasibility, and biases. Sixteen articles published between 2021 and 2025 were selected from the PubMed, Scopus, and Web of Science databases. The results show that convolutional neural network (CNN) models consistently achieve areas under the curve (AUC) greater than 0.90, with sensitivity and specificity comparable to or superior to those of specialists in the detection of significant coronary stenoses and cardiac chamber segmentation. A significant reduction in interobserver variability (between 20% and 40%) and workflow optimization were observed, in addition to support for image acquisition by inexperienced operators. However, critical barriers remain: the lack of protocol standardization, dataset bias, and the limited interpretability (black-box) of the models. It is concluded that, although AI has the potential to democratize high-precision diagnosis, its safe integration into clinical practice depends on multicenter external validations, greater algorithmic transparency, and the establishment of robust ethical and regulatory guidelines.

Downloads

Download data is not yet available.

Author Biographies

  • Matheus Jubini Celestino, Centro Universitário do Espírito Santo - UNESC

    Graduando em Medicina

  • Lara Viana Jorge, Centro Universitário do Espírito Santo - UNESC

    Graduanda em Medicina

  • Kariny Birca Marcellino, Centro Universitário do Espírito Santo - UNESC

    Graduanda em Medicina

  • Juliane Barbosa Machado, Centro Universitário do Espírito Santo - UNESC

    Graduanda em Medicina



  • Kallyne Caldeira Fabri , Centro Universitário do Espírito Santo - UNESC

    Graduanda em Medicina



  • Yasmin Espindola Moreno, Centro Universitário do Espírito Santo - UNESC

    Graduanda em Medicina



  • Nicoly Bessert Stinguel, Centro Universitário do Espírito Santo - UNESC

    Graduanda em Medicina



  • Ericles Lucas Ribeiro, Centro Universitário do Espírito Santo - UNESC

    Médico

References

DU, M. et al. Inteligência Artificial em Angiografia por TC para a Detecção de Estenose Arterial Coronariana e Placa Calcificada: Uma Revisão Sistemática e Meta-análise. Radiologia Acadêmica, v. 32, n. 7, p. 3776-3787, jul. 2025. Disponível em: https://doi.org/10.1016/j.acra.2025.03.054. DOI: https://doi.org/10.1016/j.acra.2025.03.054

IRANNEGJAD, K. et al. Inteligência artificial na angiografia por TC coronária: transformando o diagnóstico e a estratificação de risco de aterosclerose. International Journal of Cardiovascular Imaging, v. 41, n. 9, p. 1643-1656, set. 2025. Disponível em: https://doi.org/10.1007/s10554-025-03440-8. DOI: https://doi.org/10.1007/s10554-025-03440-8

KARAKUŞ, G.; DEĞIRMENCIOĞLU, A.; NANDA, N. C. Inteligência artificial em ecocardiografia: Revisão e limitações, incluindo preocupações epistemológicas. Ecocardiografia, v. 39, n. 8, p. 1044-1053, ago. 2022. Disponível em: https://doi.org/10.1111/echo.15417. DOI: https://doi.org/10.1111/echo.15417

KRITTANAWONG, C. et al. Aprendizagem Profunda para Ecocardiografia: Introdução para Médicos e Visão Futura: Revisão de Estado da Arte. Life, v. 13, n. 4, p. 1029, 17 abr. 2023. Disponível em: https://doi.org/10.3390/life13041029. DOI: https://doi.org/10.3390/life13041029

LIU, B. et al. A deep learning framework assisted echocardiography (AIEchoDx) differentiating common cardiac diseases. Scientific Reports, 2022/2023.

LIU, Y. et al. Application of artificial intelligence in echocardiography from 2009 to 2024: a bibliometric analysis. Frontiers in Medicine, v. 12, p. 1587364, 29 jul. 2025. Disponível em: https://doi.org/10.3389/fmed.2025.1587364. DOI: https://doi.org/10.3389/fmed.2025.1587364

MATURI, B. et al. Revolutionizing Cardiology: The Role of Artificial Intelligence in Echocardiography. Journal of Clinical Medicine, v. 14, n. 2, p. 625, 19 jan. 2025. Disponível em: https://doi.org/10.3390/jcm14020625. DOI: https://doi.org/10.3390/jcm14020625

MOR-AVI, V. et al. Medição assistida por aprendizado profundo de parâmetros ecocardiográficos do coração esquerdo: melhoria na variabilidade interobservador e na eficiência do fluxo de trabalho. The International Journal of Cardiovascular Imaging, v. 39, n. 12, p. 2507-2516, dez. 2023. Disponível em: https://doi.org/10.1007/s10554-023-02960-5. DOI: https://doi.org/10.1007/s10554-023-02960-5

MYHRE, P. L. et al. Ecocardiografia aprimorada por inteligência artificial no manejo de doenças cardiovasculares. Nature Reviews Cardiology, 5 ago. 2025. Disponível em: https://doi.org/10.1038/s41569-025-01197-0. DOI: https://doi.org/10.1038/s41569-025-01197-0

NARANG, A. et al. Utility of a Deep-Learning Algorithm to Guide Novices to Acquire Echocardiograms for Limited Diagnostic Use. JAMA Cardiology, v. 6, n. 6, p. 624–632, jun. 2021. Disponível em: https://doi.org/10.1001/jamacardio.2021.0185. DOI: https://doi.org/10.1001/jamacardio.2021.0185

SCHULZE, K. et al. Coronary CT angiography evaluation with artificial intelligence for individualized medical treatment of atherosclerosis: a Consensus Statement from the QCI Study Group. Nature Reviews Cardiology, 1 ago. 2025. Disponível em: https://doi.org/10.1038/s41569-025-01191-6. DOI: https://doi.org/10.1038/s41569-025-01191-6

SHRIVASTAVA, P. et al. Uma revisão sistemática sobre angiografia por TC coronariana habilitada para aprendizado profundo para quantificação de placa e estenose e previsão de risco cardíaco. European Journal of Radiology Open, v. 14, p. 100652, 2 maio 2025. Disponível em: https://doi.org/10.1016/j.ejro.2025.100652. DOI: https://doi.org/10.1016/j.ejro.2025.100652

STAMATE, E. et al. Revolutionizing Cardiology through Artificial Intelligence-Big Data from Proactive Prevention to Precise Diagnostics and Cutting-Edge Treatment-A Comprehensive Review of the Past 5 Years. Diagnostics, v. 14, n. 11, p. 1103, 26 maio 2024. Disponível em: https://doi.org/10.3390/diagnostics14111103. DOI: https://doi.org/10.3390/diagnostics14111103

TROMP, J. et al. A formal validation of a deep learning-based automated interpretation of echocardiography parameters. Nature Communications, 2022. DOI: https://doi.org/10.1038/s41467-022-34245-1

TU, Li et al. Accuracy of deep learning in the differential diagnosis of coronary artery stenosis: a systematic review and meta-analysis. BMC Medical Imaging, v. 24, n. 243, 2024. Disponível em: https://doi.org/10.1186/s12880-024-01403-4. DOI: https://doi.org/10.1186/s12880-024-01403-4

VAN HERTEN, R. L. M. et al. O papel da inteligência artificial na angiografia por TC coronária. Netherlands Heart Journal, v. 32, n. 11, p. 417-425, nov. 2024. Disponível em: https://doi.org/10.1007/s12471-024-01901-8. DOI: https://doi.org/10.1007/s12471-024-01901-8

Published

06/01/2026

How to Cite

APPLICATIONS OF ARTIFICIAL INTELLIGENCE IN CARDIAC IMAGING EXAMS (ECHOCARDIOGRAPHY AND CORONARY CT ANGIOGRAPHY): ACCURACY, CLINICAL FEASIBILITY, AND ALGORITHMIC BIASES – AN INTEGRATIVE REVIEW. (2026). RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 7(1), e717150. https://doi.org/10.47820/recima21.v7i1.7150