O USO DA INTELIGÊNCIA ARTIFICIAL NO AUXÍLIO DA TRIAGEM DE ADULTOS EM SERVIÇOS DE EMERGÊNCIA

Autores

DOI:

https://doi.org/10.47820/recima21.v6i10.6821

Palavras-chave:

Inteligência artificial, Medicina de emergência, Classificação de risco

Resumo

Objetivo: Analisar, por meio de uma revisão bibliográfica integrativa, como a Inteligência Artificial (IA) pode auxiliar na classificação de risco de pacientes adultos em serviços de emergência, melhorando a eficiência, a precisão e os desfechos clínicos. Método: Foi realizada uma revisão integrativa da literatura nas bases MeSH, DeCs, BVS e SciELO utilizando os descritores "inteligência artificial", "triagem de emergência" e "adultos". Foram incluídos artigos publicados entre 2019 e 2025, em português ou inglês, que abordassem aplicações práticas de IA na triagem com dados quantitativos de desempenho. Resultados: oito estudos foram incluídos na análise final. Os sistemas de IA demonstraram redução significativa no tempo de classificação comparados a métodos manuais, com algoritmos como redes neurais apresentando sensibilidade superior na detecção de casos graves. O modelo KATE obteve 75,9% de acurácia vs. 59,8% de enfermeiros na atribuição de níveis ESI. Sistemas multimodais aumentaram a sensibilidade em 10,94% para detecção de AVC. A IA reduziu o tempo mediano desde chegada até triagem em 33%. Conclusão: A IA mostra-se promissora na otimização da triagem em emergências, potencializando a segurança do paciente e a alocação de recursos. Contudo, sua implementação requer rigor ético, transparência algorítmica e adaptação às realidades locais, sempre mantendo supervisão humana qualificada.

Downloads

Os dados de download ainda não estão disponíveis.

Biografias do Autor

  • Leônidas das Graças Mendes Júnior

    AESGA: Autarquia do Ensino Superior de Garanhuns.

  • Genilson Marcio de Lima

    AESGA: Autarquia do Ensino Superior de Garanhuns.

  • João Oliveira Tavares

    AESGA: Autarquia do Ensino Superior de Garanhuns.

  • Larissa Rebeca Antunes Mendonça

    AESGA: Autarquia do Ensino Superior de Garanhuns.

  • Thaynan Silva Narciso

    AESGA: Autarquia do Ensino Superior de Garanhuns.

Referências

1. Ahmed MI, Spooner B, Isherwood J, et al. A systematic review of the barriers to implementing artificial intelligence in healthcare. Health Policy Technol 2024;139(2):100758. doi:10.1016/j.healthpol.2024.100758 DOI: https://doi.org/10.7759/cureus.46454

2. Alowais SA, Alghamdi SS, Alsuhebany N, et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med Educ. 2023;23(1):689. doi:10.1186/s12909-023-04698-z DOI: https://doi.org/10.1186/s12909-023-04698-z

3. Ausserhofer D, Zaboli A, Pfeifer N, et al. Performance of the Manchester Triage System in patients with dyspnoea: a retrospective observational study. Int Emerg Nurs. 2020;3: 100931. doi:10.1016/j.ienj.2020.100931 DOI: https://doi.org/10.1016/j.ienj.2020.100931

4. Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthc J. 2021;8(2):e188-e194, 2021. doi:10.7861/fhj.2021-0095 DOI: https://doi.org/10.7861/fhj.2021-0095

5. Bean DM, Kraljevic Z, Shek A, et al. Natural language processing data services for healthcare providers. BMC Med Inform Decis Mak. 2024;24(1):320. doi:10.1186/s12911-024-02713-x DOI: https://doi.org/10.1186/s12911-024-02713-x

6. Bekbolatova M, Mayer J, Ong CW, et al. Transformative potential of AI in healthcare: definitions, applications, and navigating the ethical landscape and public perspectives. Healthcare (Basel). 2025;12(2):125. doi:10.3390/healthcare12020125 DOI: https://doi.org/10.3390/healthcare12020125

7. Bordewich M, Hameed A, Woodcock C. AI system performance on cancer detection tasks: the impact of dataset composition. Artif Intell Med. 2024;147:102720. doi:10.1016/j.artmed.2023.102720 DOI: https://doi.org/10.1016/j.artmed.2023.102720

8. Cai T, Ni H, Yu M, Huang X, Wong K, Volpi J, Wang JZ, Wong STC. DeepStroke: an efficient stroke screening framework for emergency rooms with multimodal adversarial deep learning. Med Image Anal. 2022;80:102522. doi:10.1016/j.media.2022.102522 DOI: https://doi.org/10.1016/j.media.2022.102522

9. Cicolo EA, Nishi FA, Peres HHC, Da Cruz DDAL. Effectiveness of the Manchester Triage System on time to treatment in the emergency department: a systematic review. JBI Evid Synth. 2020;18(1):56-73. doi:10.11124/JBISRIR-2017-003825 DOI: https://doi.org/10.11124/JBISRIR-2017-003825

10. Cross JL, Choma MA, Onofrey JA. Bias in medical AI: implications for clinical decision-making. PLOS Digital Health. 2024;3(11):e0000651. doi:10.1371/journal.pdig.0000651 DOI: https://doi.org/10.1371/journal.pdig.0000651

11. De Micco F, Di Palma G. Ferorelli D, et al. Artificial intelligence in healthcare: transforming patient safety with intelligent systems—a systematic review. Front Med. 2025;11:1522554. doi:10.3389/fmed.2024.1522554 DOI: https://doi.org/10.3389/fmed.2024.1522554

12. Fonseca CG, Souza EN, Kuniyoshi RR, et al. Machine learning na medicina: revisão e aplicabilidade. Arq Bras Cardiol. 2021;116(4):695-704. doi:10.36660/abc.20200596 DOI: https://doi.org/10.36660/abc.20200596

13. Fraile Navarro D, Ijaz K, Rezazadegan D, et al. Clinical named entity recognition and relation extraction using natural language processing of medical free text: a systematic review. Int J Med Inform. 2023;177:105122. doi:10.1016/j.ijmedinf.2023.105122 DOI: https://doi.org/10.1016/j.ijmedinf.2023.105122

14. Helguera-Repetto AC, Yañez-Mo M, González-Muñoz M, et al. Neonatal sepsis diagnosis decision-making based on artificial neural networks. Front Pediatr. 2020;8:525. doi:10.3389/fped.2020.00525 DOI: https://doi.org/10.3389/fped.2020.00525

15. Ivanov O, Wolf L, Brecher D, et al. Improving ED Emergency Severity Index acuity assignment using machine learning and clinical natural language processing. J Emerg Nurs. 2021;47(2):265-278.e7, 2021. doi:10.1016/j.jen.2020.11.001 DOI: https://doi.org/10.1016/j.jen.2020.11.001

16. Jerfy A, Selden O, Balkrishnan R. The growing impact of natural language processing in healthcare and public health. Inquiry. 2024;61:469580241290095. doi:10.1177/00469580241290095 DOI: https://doi.org/10.1177/00469580241290095

17. Johnson KW, Torres Soto J, Glicksberg BS, et al. Artificial intelligence in cardiology. J Am Coll Cardiol. 2018;71(23):2668-2679. doi:10.1016/j.jacc.2018.03.521 DOI: https://doi.org/10.1016/j.jacc.2018.03.521

18. Kiblboeck D, Steinrueck K, Nitsche C, et al. Evaluation of the Manchester triage system for patients with acute coronary syndrome. Wien Klin Wochenschr. 2020;132(11-12):277-282. doi:10.1007/s00508-020-01632-x DOI: https://doi.org/10.1007/s00508-020-01632-x

19. Lauritsen SM, Kalør ME, Kongsgaard EL, Lauritsen KM, Jørgensen MJ, Lange J, Thiesson B. Early detection of sepsis utilizing deep learning on electronic health record event sequences. Artif Intell Med. 2020;104:101820. doi:10.1016/j.artmed.2020.101820 DOI: https://doi.org/10.1016/j.artmed.2020.101820

20. Li F, Jin Y, Liu W, et al. Fine-tuning bidirectional encoder representations from transformers (BERT)–based models on large-scale electronic health record notes: an empirical study. JMIR Med Inform. 2019;7(3):e14830. doi:10.2196/14830 DOI: https://doi.org/10.2196/14830

21. Lin PC, Chen KT, Chen HC, Islam MM, Lin MC. Machine learning model to identify sepsis patients in the emergency department: algorithm development and validation. J Pers Med. 2021;11(11):1055. doi:10.3390/jpm11111055 DOI: https://doi.org/10.3390/jpm11111055

22. Lynn LA. Artificial intelligence systems for complex decision-making in acute care medicine: a review. Patient Saf Surg. 2019;13:6. doi:10.1186/s13037-019-0188-2 DOI: https://doi.org/10.1186/s13037-019-0188-2

23. Morone G, De Angelis L, Martino Cinnera A, et al. Artificial intelligence in clinical medicine: a state-of-the-art overview of systematic reviews with methodological recommendations for improved reporting. Front Digit Health. 2025;7:1550731. doi:10.3389/fdgth.2025.1550731 DOI: https://doi.org/10.3389/fdgth.2025.1550731

24. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science. 2019;366(6464):447-453. doi:10.1126/science.aax2342 DOI: https://doi.org/10.1126/science.aax2342

25. Parikh RB, Teeple S, Navathe AS. Addressing bias in artificial intelligence in health care. JAMA. 2023;322(24):2377-2378. doi:10.1001/jama.2019.18058 DOI: https://doi.org/10.1001/jama.2019.18058

26. Peiffer-Smadja N, Dellière S, Rodriguez C, et al. Machine learning in the clinical microbiology laboratory: has the time come for routine practice? Clin Microbiol Infect. 2020;26(10):1300-1309, 2020. doi:10.1016/j.cmi.2020.02.006 DOI: https://doi.org/10.1016/j.cmi.2020.02.006

27. Poalelungi DG, Musat CL, Fulga A. et al. Advancing patient care: how artificial intelligence is transforming healthcare. J Pers Med. 2023;13(8):1214. doi:10.3390/jpm13081214 DOI: https://doi.org/10.3390/jpm13081214

28. Roppelt JS, Kanbach DK, Kraus S. Artificial intelligence in healthcare institutions: a systematic literature review on influencing factors. Technol Soc,. 2024;76:102443. doi:10.1016/j.techsoc.2023.102488 DOI: https://doi.org/10.1016/j.techsoc.2023.102443

29. Sartini M, Spada A, Bagattini B, et al. Overcrowding in emergency department: causes, consequences, and solutions - a narrative review. Healthcare (Basel). 2022;10(9):1625. doi:10.3390/healthcare10091625 DOI: https://doi.org/10.3390/healthcare10091625

30. Secinaro S, Calandra D, Secinaro A, Muthurangu V, Biancone P. The role of artificial intelligence in healthcare: a structured literature review. BMC Med Inform Decis Mak. 2021;21(1):125. doi:10.1186/s12911-021-01488-9 DOI: https://doi.org/10.1186/s12911-021-01488-9

31. Silva JA, Macedo ME, Santos MJ, et al. Emergency Severity Index: accuracy in risk classification. Einstein (São Paulo). 2017;15(4):421-427. doi:10.1590/S1679-45082017AO3964 DOI: https://doi.org/10.1590/s1679-45082017ao3964

32. Singh DP, Kaushik B. A systematic literature review for the prediction of anticancer drug response using various machine-learning and deep-learning techniques. Chem Biol Drug Des. 2023;101(1):175-194. doi:10.1111/cbdd.14164 DOI: https://doi.org/10.1111/cbdd.14164

33. Smith KP, Kang AD, Kirby JE. Automated interpretation of blood culture gram stains by use of a deep convolutional neural network. J Clin Microbiol. 2018;56(3):e01521-17. doi:10.1128/JCM.01521-17 DOI: https://doi.org/10.1128/JCM.01521-17

34. Souza CC, Chianca TCM, Cordeiro Júnior W, et al. A systematic review on the validity and reliability of an emergency department triage scale, the Manchester Triage System. Int J Nurs Stud. 2018;77:1-7. doi:10.1016/j.ijnurstu.2014.01.013 DOI: https://doi.org/10.1016/j.ijnurstu.2014.01.013

35. Storm-Versloot MN, Ubbink DT, Chin a Choi V, Luitse JS. Observer agreement of the Manchester Triage System and the Emergency Severity Index: a simulation study. Emerg Med J. 2009;26(8):556-560. doi:10.1136/emj.2008.059378 DOI: https://doi.org/10.1136/emj.2008.059378

36. Subramanian M, Wojtusciszyn A, Favre L, et al. Precision medicine in the era of artificial intelligence: implications in chronic disease management. J Transl Med. 2020;18(1):472. doi:10.1186/s12967-020-02658-5 DOI: https://doi.org/10.1186/s12967-020-02658-5

37. Sun L, Liu K, Zhang Y, et al. ED-Copilot: reduce emergency department wait time with language model diagnostic assistance. In: Proceedings of the 41st International Conference on Machine Learning. PMLR. 2024:46942-46956.

38. Tagliaferri SD, Angelova M, Zhao X, et al. Artificial intelligence to improve back pain outcomes and lessons learnt from clinical classification approaches: three systematic reviews. NPJ Digit Med. 2020;3:93. doi:10.1038/s41746-020-0303-x DOI: https://doi.org/10.1038/s41746-020-0303-x

39. Taylor RA, Moore CL, Cheung KH, et al. Impact of artificial intelligence-based triage decision support on emergency department care. NEJM AI. 2025;2(3). doi:10.1056/AIoa2400296 DOI: https://doi.org/10.1056/AIoa2400296

40. Tolu-Akinnawo O, Ezekwueme F, Awoyemi T. Telemedicine in cardiology: enhancing access to care and improving patient outcomes. Cureus. 2024;16(6):e62852. doi:10.7759/cureus.62852 DOI: https://doi.org/10.7759/cureus.62852

41. Ullah N, Mirza S, Haroon M, et al. Natural language processing in electronic health records in relation to healthcare decision-making: a systematic review. Comput Biol Med. 2023;155:106649. doi:10.1016/j.compbiomed.2023.106649 DOI: https://doi.org/10.1016/j.compbiomed.2023.106649

42. Ullah W, Ali Q. Role of artificial intelligence in healthcare settings: a systematic review. J Med Artif Intell. 2025;8:24. doi:10.21037/jmai-24-294 DOI: https://doi.org/10.21037/jmai-24-294

43. van der Meijden SL, Koumpouras F, Yucel O. et al. Intensive care unit physicians' perspectives on artificial intelligence-based clinical decision support tools: preimplementation survey study. JMIR Hum Factors. 2023;10:e39114. doi:10.2196/39114 DOI: https://doi.org/10.2196/39114

44. van der Wulp I, Schrijvers AJ, van Stel HF. Predicting admission and mortality with the Emergency Severity Index and the Manchester Triage System: a retrospective observational study. Emerg Med J. 2009;26(7):506-509. doi:10.1136/emj.2008.063768 DOI: https://doi.org/10.1136/emj.2008.063768

45. Vedana AB, Silva CA, Santos RD, et al. Inteligência artificial na medicina diagnóstica. Brazilian Journal of Implantology and Health Sciences. 2024;6(11):765-794. doi:10.36557/2674-8169.2024v6n11p765-794 DOI: https://doi.org/10.36557/2674-8169.2024v6n11p765-794

46. Weis CV, Jutzeler CR, Borgwardt K. Machine learning for microbial identification and antimicrobial susceptibility testing on MALDI-TOF mass spectra: a systematic review. Clin Microbiol Infect. 2020;26(10):1310-1317. doi:10.1016/j.cmi.2020.03.014 DOI: https://doi.org/10.1016/j.cmi.2020.03.014

47. Yadav N, Pandey V, Singh A, et al. Data privacy in healthcare: in the era of artificial intelligence. Indian Dermatol Online J. 2023;14(6):788-792. doi:10.4103/idoj.idoj_543_23 DOI: https://doi.org/10.4103/idoj.idoj_543_23

48. Yang X, Zeng X, Zheng W, et al. A large language model for electronic health records. NPJ Digit Med. 2022;5(1):194. doi:10.1038/s41746-022-00742-2 DOI: https://doi.org/10.1038/s41746-022-00742-2

49. Zachariasse JM, Seiger N, Rood PP, et al. Validity of the Manchester Triage System in emergency care: a prospective observational study. PLoS One. 2017;12(2):e0170811. doi:10.1371/journal.pone.0170811 DOI: https://doi.org/10.1371/journal.pone.0170811

50. Zakeri H, Afshari Saleh L, Niroumand S, Ziadi-Lotfabadi M. Comparison the Emergency Severity Index and Manchester Triage System in trauma patients. Bull Emerg Trauma. 2022;10(2):65-70. doi:10.30476/BEAT.2022.92297.1302

Publicado

06/10/2025

Como Citar

O USO DA INTELIGÊNCIA ARTIFICIAL NO AUXÍLIO DA TRIAGEM DE ADULTOS EM SERVIÇOS DE EMERGÊNCIA. (2025). RECIMA21 -Revista Científica Multidisciplinar - ISSN 2675-6218, 6(10), e6106821. https://doi.org/10.47820/recima21.v6i10.6821