SUPLEMENTAÇÃO DE SELÊNIO EM ZEBRAFISH (Danio rerio): UMA REVISÃO INTEGRATIVA

Autores

DOI:

https://doi.org/10.47820/recima21.v6i12.7001

Palavras-chave:

Genética, Selênio, Zebrafish

Resumo

O selênio (Se) é essencial para o funcionamento celular de todos os organismos e desempenha papel protetor dos efeitos nocivos causados pelos radicais livres. O Danio rerio (zebrafish) é um modelo animal muito utilizado em muitas pesquisas, possui diversas vantagens como: semelhança fisiológica com mamíferos, facilidade de manipulação genética, larvas opticamente claras, além disso, são animais altamente férteis, de baixo custo e manutenção devido ao seu tamanho. O objetivo deste trabalho é realizar uma revisão integrativa da literatura disponível sobre o papel e a suplementação de Se em Danio rerio. A revisão foi realizada nas bases de dados Pubmed, BVS, Scopus, Web of Science e Periódico da Capes, realizando uma busca avançada por meio das palavras chaves selecionadas. Mais de 700 artigos foram identificados. Os artigos incluídos foram publicados em inglês, português ou espanhol, a partir do ano de 2005, também foram considerados artigos que avaliaram o papel do Se em zebrafish, considerando o efeito à exposição, genética, comportamento e toxicidade. Selecionou-se 37 artigos experimentais e originais que se adequavam aos objetivos do trabalho. O efeito do Se no zebrafish depende muito da forma e da concentração de Se a que o animal é exposto. Os trabalhos apontam o Se com possível efeito redutor no risco de cânceres, e avaliam o seu potencial na prevenção à toxicidade ao acúmulo de metil mercúrio. Todavia, em doses altas, o selênio, além de causar toxicidade, também altera o comportamento do zebrafish, interferindo no processo de memória, natação e reconhecimento espacial.

Downloads

Os dados de download ainda não estão disponíveis.

Biografias do Autor

  • Francini Petrolli, Universidade Federal de Ciências da Saúde, RS

    Graduada em Biomedicina pela Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), com habilitações em Análises Clínicas e Genética. Pós-graduação em Pesquisa Clínica e Pós Graduação em Gestão e Liderança em Serviço de Saúde pelo Centro Universitário Internacional (UNINTER). Atualmente sou bolsista em Pesquisa Clínica no Grupo de Pesquisa de Genética Médica do Hospital de Clínicas de Porto Alegre, Rio Grande do Sul, Brasil.

  • Silvana Almeida, Universidade Federal de Ciências da Saúde, RS.

    Possui graduação em Farmácia pela Universidade Federal do Rio Grande do Sul, mestrado e doutorado em Genética e Biologia Molecular pela Universidade Federal do Rio Grande do Sul. Atualmente, é professora titular da Universidade Federal de Ciências da Saúde de Porto Alegre,  Rio Grande do Sul, Brasil.

Referências

1. Davis CD, Tsuji PA, Milner JA. Selenoproteins and Cancer Prevention. Annu Rev Nutr. 2012;32(1):73–95. DOI: https://doi.org/10.1146/annurev-nutr-071811-150740

2. Darvesh A, Bishayee A. Selenium in the Prevention and Treatment of Hepatocellular Carcinoma. Anticancer Agents Med Chem. 2012;10(4):338–45. DOI: https://doi.org/10.2174/187152010791162252

3. Kieliszek M. Selenium–fascinating microelement, properties and sources in food. Molecules. 2019;24(7). DOI: https://doi.org/10.3390/molecules24071298

4. Tamari Y, Kim ES. Longitudinal study of the dietary selenium intake of exclusively breast-fed infants during early lactation in Korea and Japan. J Trace Elem Med Biol. 1999;13(3):129–33. DOI: https://doi.org/10.1016/S0946-672X(99)80002-9

5. Post M, Lubiński W, Lubiński J, Krzystolik K, Baszuk P, Muszyńska M, et al. Serum selenium levels are associated with age-related cataract. Ann Agric Environ Med. 2018;25(3):443–8. DOI: https://doi.org/10.26444/aaem/90886

6. Kieliszek M, Błazejak S. Current knowledge on the importance of selenium in food for living organisms: A review. Molecules. 2016;21(5). DOI: https://doi.org/10.3390/molecules21050609

7. Shahid NM, Niazi NK, Khalid S, Murtaza B, Bibi I, et al. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ Pollut. 2018;234:915–34. DOI: https://doi.org/10.1016/j.envpol.2017.12.019

8. Méplan C, Hesketh J. The influence of selenium and selenoprotein gene variants on colorectal cancer risk. Mutagenesis. 2012;27(2):177–86. DOI: https://doi.org/10.1093/mutage/ger058

9. Bellinger FP, Raman AV, Reeves MA, Berry MJ. Regulation and function of selenoproteins in human disease. Biochem J. 2009;422(1):11–22. DOI: https://doi.org/10.1042/BJ20090219

10. Lu J, Holmgren A. Selenoproteins. J Biol Chem. 2009;284(2):723–7. DOI: https://doi.org/10.1074/jbc.R800045200

11. Abdulah R, Miyazaki K, Nakazawa M, Koyama H. Chemical forms of selenium for cancer prevention. J Trace Elem Med Biol. 2005;19(2–3):141–50. DOI: https://doi.org/10.1016/j.jtemb.2005.09.003

12. El-Bayoumy K, Sinha R. Molecular chemoprevention by selenium: A genomic approach. Mutat Res. 2005;591(1–2):224–36. DOI: https://doi.org/10.1016/j.mrfmmm.2005.04.021

13. Fraczek A, Pasternak K. Selen w medycynie i lecznictwie. J Elem. 2013;18(1):145–63.

14. Kieliszek M, Błazejak S. Selenium: Significance, and outlook for supplementation. Nutrition. 2013;29(5):713–8. DOI: https://doi.org/10.1016/j.nut.2012.11.012

15. Rayman MP. The influence of Selenium on human health. Lancet. 2000;356(9225):233–41. DOI: https://doi.org/10.1016/S0140-6736(00)02490-9

16. Navarro-Alarcon M, Cabrera-Vique C. Selenium in food and the human body: A review. Sci Total Environ. 2008;400(1–3):115–41. DOI: https://doi.org/10.1016/j.scitotenv.2008.06.024

17. Pedrero Z, Madrid Y. Novel approaches for selenium speciation in foodstuffs and biological specimens: A review. Anal Chim Acta. 2009;634(2):135–52. DOI: https://doi.org/10.1016/j.aca.2008.12.026

18. Kryczyk J, Zagrodzki P. Selen w chorobie Gravesa-Basedowa. Postepy Hig Med Dosw. 2013;67:491–8. DOI: https://doi.org/10.5604/17322693.1051000

19. Oropeza-Moe M, Wisløff H, Bernhoft A. Selenium deficiency associated porcine and human cardiomyopathies. J Trace Elem Med Biol. 2015;31:148–56. DOI: https://doi.org/10.1016/j.jtemb.2014.09.011

20. Song M, Kumaran MN, Gounder M, Gibbon DG, Nieves-Neira W, Vaidya A, et al. Phase I trial of selenium plus chemotherapy in gynecologic cancers. Gynecol Oncol. 2018;150(3):478–86. DOI: https://doi.org/10.1016/j.ygyno.2018.07.001

21. Fernández-Martínez A, Charlet L. Selenium environmental cycling and bioavailability: A structural chemist point of view. Rev Environ Sci Biotechnol. 2009;8(1):81–110. DOI: https://doi.org/10.1007/s11157-009-9145-3

22. Nuttall KL. Evaluating selenium poisoning. Ann Clin Lab Sci. 2006;36(4):409–20.

23. Wallenberg M, Misra S, Björnstedt M. Selenium cytotoxicity in cancer. Basic Clin Pharmacol Toxicol. 2014;114(5):377–86. DOI: https://doi.org/10.1111/bcpt.12207

24. Pérez-Corona MT, Sánchez-Martínez M, Valderrama MJ, Rodríguez ME, Cámara C, Madrid Y. Selenium biotransformation by Saccharomyces cerevisiae and Saccharomyces bayanus during white wine manufacture: Laboratory-scale experiments. Food Chem. 2011;124(3):1050–5. DOI: https://doi.org/10.1016/j.foodchem.2010.07.073

25. Pillai R, Uyehara-Lock JH, Bellinger FP. Selenium and selenoprotein function in brain disorders. IUBMB Life. 2014;66(4):229–39. DOI: https://doi.org/10.1002/iub.1262

26. Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C. Therapeutic applications of selenium nanoparticles. Biomed Pharmacother. 2019;111:802–12. DOI: https://doi.org/10.1016/j.biopha.2018.12.146

27. Ibrahim M, Mussulini BHM, Moro L, de Assis AM, Rosemberg DB, de Oliveira DL, et al. Anxiolytic effects of diphenyl diselenide on adult zebrafish. Prog Neuropsychopharmacol Biol Psychiatry. 2014;54:187–94. DOI: https://doi.org/10.1016/j.pnpbp.2014.06.002

28. dos Santos MM, de Macedo GT, Prestes AS, Ecker A, Müller TE, Leitemperger J, et al. Modulation of redox and insulin signaling underlie anti-hyperglycemic and antioxidant effects of diphenyl diselenide in zebrafish. Free Radic Biol Med. 2020;158:20–31. DOI: https://doi.org/10.1016/j.freeradbiomed.2020.06.002

29. Said ES, Ahmed RM, Mohammed RA, Morsi EM, Elmahdi MH, Elsayed HS, et al. Ameliorating effect of melatonin on mercuric chloride-induced neurotoxicity in rats. Heliyon. 2021;7(7):e07485. DOI: https://doi.org/10.1016/j.heliyon.2021.e07485

30. Wu J, Cheng G, Lu Z, Wang M, Tian J, Bi Y. Effects of methyl mercury chloride on rat hippocampus structure. Biol Trace Elem Res. 2016;171(1):124–30. DOI: https://doi.org/10.1007/s12011-015-0492-3

31. Rao MV, Purohit A, Patel T. Melatonin protection on mercury-exerted brain toxicity in the rat. Drug Chem Toxicol. 2010;33(2):209–16. DOI: https://doi.org/10.3109/01480540903349258

32. Sabir S, Saleem U, Akash MSH, Qasim M, Chauhdary Z. Thymoquinone induces Nrf2 mediated adaptive homeostasis: Implication for mercuric chloride-induced nephrotoxicity. ACS Omega. 2022;7(8):7370–9. DOI: https://doi.org/10.1021/acsomega.2c00028

33. Berlin M. Interaction between selenium and inorganic mercury. Environ Health Perspect. 1978;25:67–9. DOI: https://doi.org/10.1289/ehp.782567

34. Parizek J, Ostdalova I, Kalouskova J, Babicky A, Pavlik L, Bibr B. Maternal transmission of selenium in the pregnant and lactating rat. 1970. DOI: https://doi.org/10.1530/jrf.0.0250157

35. Kosta L, Byrne AR, Zelenko V. Correlation between selenium and mercury in man following exposure to inorganic mercury. Nat Publ Gr. 1975. DOI: https://doi.org/10.1038/254238a0

36. Spence R, Gerlach G, Lawrence C, Smith C. The behaviour and ecology of the zebrafish. Biol Rev. 2008;83(1):13–34. DOI: https://doi.org/10.1111/j.1469-185X.2007.00030.x

37. Kinth P, Mahesh G, Panwar Y. Mapping of zebrafish research: A global outlook. Zebrafish. 2013;10(4):510–7. DOI: https://doi.org/10.1089/zeb.2012.0854

38. Lidster K, Readman GD, Prescott MJ, Owen SF. International survey on the use and welfare of zebrafish. J Fish Biol. 2017;90(5):1891–905. DOI: https://doi.org/10.1111/jfb.13278

39. Hörstgen-Schwark G. Production of homozygous diploid zebra fish. Aquaculture. 1993;112(1):25–37. DOI: https://doi.org/10.1016/0044-8486(93)90155-R

40. Aleström P, D’Angelo L, Midtlyng PJ, Schorderet DF, Schulte-Merker S, Sohm F, et al. Zebrafish: Housing and husbandry recommendations. Lab Anim. 2020;54(3):213–24. DOI: https://doi.org/10.1177/0023677219869037

41. Grunwald DJ, Eisen J. Headwaters of the zebrafish. Nat Rev Genet. 2002;3(9):711–7. DOI: https://doi.org/10.1038/nrg892

42. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. The zebrafish reference genome. Nature. 2013;496(7446):498–503. DOI: https://doi.org/10.1038/nature12111

43. Collins JE, White S, Searle SMJ, Stemple DL. Incorporating RNA-seq data into the zebrafish ensembl genebuild. Genome Res. 2012;22(10):2067–78. DOI: https://doi.org/10.1101/gr.137901.112

44. Isenberg HD. Pathogenicity and virulence: another view. Clin Microbiol Rev. 1988;1(1):40–53. DOI: https://doi.org/10.1128/CMR.1.1.40

45. Chu J, Sadler KC. New school in liver development: Lessons from zebrafish. Hepatology. 2009;50(5):1656–63. DOI: https://doi.org/10.1002/hep.23157

46. Astell KR, Sieger D. Zebrafish in vivo models of cancer and metastasis. Cold Spring Harb Perspect Med. 2020;10(8):1–17. DOI: https://doi.org/10.1101/cshperspect.a037077

47. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203(3):253–310. DOI: https://doi.org/10.1002/aja.1002030302

48. Seiler-Hausmann JD, Liedtke C, von Weizsäcker EU. Introduction. Eco-efficiency Beyond. 2017;238(12):9–12. DOI: https://doi.org/10.9774/GLEAF.978-1-909493-40-7_2

49. Menke AL, Spitsbergen JM, Wolterbeek APM, Woutersen RA. Normal anatomy and histology of the adult zebrafish. Toxicol Pathol. 2011;39(5):759–75. DOI: https://doi.org/10.1177/0192623311409597

50. Thomas JK, Janz DM. Dietary selenomethionine exposure in adult zebrafish. Aquat Toxicol. 2011;102(1–2):79–86. DOI: https://doi.org/10.1016/j.aquatox.2010.12.020

51. Janz DM, DeForest DK, Brooks ML, Chapman PM, Gilron G, Hoff D, et al. Selenium toxicity to aquatic organisms. Ecol Assess Selenium Aquat Environ. 2010:141–231. DOI: https://doi.org/10.1201/EBK1439826775-c6

52. Goessling W, Sadler KC. Zebrafish: An Important Tool for Liver Disease Research. Gastroenterology. 2015;149(6):1361–77. DOI: https://doi.org/10.1053/j.gastro.2015.08.034

53. Lieschke GJ, Currie PD. Animal models of human disease: Zebrafish swim into view. Nat Rev Genet. 2007;8(5):353–67. DOI: https://doi.org/10.1038/nrg2091

54. Roberts AC, Bill BR, Glanzman DL. Learning and memory in zebrafish larvae. Front Neural Circuits. 2013;7:1–11. DOI: https://doi.org/10.3389/fncir.2013.00126

55. Goldsmith P. Zebrafish as a pharmacological tool. Curr Opin Pharmacol. 2004;4(5):504–12. DOI: https://doi.org/10.1016/j.coph.2004.04.005

56. Asaoka Y, Terai S, Sakaida I, Nishina H. Role of fish models in NAFLD. Dis Model Mech. 2014;7(3):409. DOI: https://doi.org/10.1242/dmm.016022

57. Willebrords J, Veloso I, Pereira A, Maes M, Yanguas SC, Colle I, et al. Strategies, models and biomarkers in NAFLD research. Prog Lipid Res. 2015;59:106–25. DOI: https://doi.org/10.1016/j.plipres.2015.05.002

58. Yin H, Wang S, Zhang Y, Wu M, Wang JW, Ma Y. Zuogui Pill improves dexamethasone-induced osteoporosis in zebrafish. Biomed Pharmacother. 2018;97:995–9. DOI: https://doi.org/10.1016/j.biopha.2017.11.029

59. Yamashita M, Yamashita Y, Suzuki T, Kani Y, Mizusawa N, Imamura S, et al. Selenoneine mediates detox mechanisms against methylmercury. Mar Biotechnol. 2013;15(5):559–70. DOI: https://doi.org/10.1007/s10126-013-9508-1

60. Bjerregaard P, Fjordside S, Hansen MG, Petrova MB. Dietary selenium reduces retention of methyl mercury in fish. Environ Sci Technol. 2011;45(22):9793–8. DOI: https://doi.org/10.1021/es202565g

61. Amlund H, Lundebye AK, Boyle D, Ellingsen S. Dietary selenomethionine influences methylmercury accumulation in zebrafish. Aquat Toxicol. 2015;158:211–7. DOI: https://doi.org/10.1016/j.aquatox.2014.11.010

62. Penglase S, Hamre K, Ellingsen S. Selenium and mercury have synergistic negative effects on fish reproduction. Aquat Toxicol. 2014;149:16–24. DOI: https://doi.org/10.1016/j.aquatox.2014.01.020

63. Penglase S, Hamre K, Ellingsen S. Selenium prevents downregulation of antioxidant genes by methylmercury. Free Radic Biol Med. 2014;75:95–104. DOI: https://doi.org/10.1016/j.freeradbiomed.2014.07.019

64. Rasinger JD, Lundebye AK, Penglase SJ, Ellingsen S, Amlund H. Methylmercury neurotoxicity and selenium in zebrafish. Int J Mol Sci. 2017;18(4). DOI: https://doi.org/10.3390/ijms18040725

65. Cabezas-Sanchez P, Rainieri S, Conlledo N, Barranco A, Sanz-Landaluze J, Camara C, et al. Impact of selenium on methylmercury exposed zebrafish. Chemosphere. 2019;236:124295. DOI: https://doi.org/10.1016/j.chemosphere.2019.07.026

66. Dolgova NV, Nehzati S, Macdonald TC, Summers KL, Crawford AM, Krone PH, et al. Disruption of selenium transport contributes to mercury toxicity. Metallomics. 2019;11(3):621–31. DOI: https://doi.org/10.1039/c8mt00315g

67. Thomas JK, Janz DM. Embryo microinjection of selenomethionine reduces hatchability. Sci Rep. 2016;6:26520. DOI: https://doi.org/10.1038/srep26520

68. Dolgova NV, Hackett MJ, MacDonald TC, Nehzati S, James AK, Krone PH, et al. Distribution of selenium in zebrafish larvae. Metallomics. 2016;8(3):305–12. DOI: https://doi.org/10.1039/C5MT00279F

69. Liu Z, Chen B, Li X, Wang La, Xiao H, Liu D. Toxicity assessment of zinc, selenium, and strontium. Sci Total Environ. 2019;670:433–8. DOI: https://doi.org/10.1016/j.scitotenv.2019.03.259

70. Zhang X, Wang G, Wang T, Chen J, Feng C, Yun S, et al. Selenomethionine alleviates fluoride toxicity. Aquat Toxicol. 2022;242:106019. DOI: https://doi.org/10.1016/j.aquatox.2021.106019

71. Kalishwaralal K, Jeyabharathi S, Sundar K, Muthukumaran A. Cardiovascular effects of selenium nanoparticles in zebrafish. Artif Cells Nanomed Biotechnol. 2016;44(3):990–6.

72. Kalishwaralal K, Jeyabharathi S, Sundar K, Muthukumaran A. Green synthesis of selenium nanoparticles. Artif Cells Nanomed Biotechnol. 2016;44(2):471–7. DOI: https://doi.org/10.3109/21691401.2014.962744

73. Pettem CM, Weber LP, Janz DM. Cardiac and metabolic effects of dietary selenomethionine. Toxicol Sci. 2017;159(2):449–60. DOI: https://doi.org/10.1093/toxsci/kfx149

74. Zhao G, Zhu Y, Hu J, Gao M, Hong Y. L-selenomethionine induces cardiovascular defects in zebrafish embryos. Chemosphere. 2022;290:133351. DOI: https://doi.org/10.1016/j.chemosphere.2021.133351

75. Thomas JK, Janz DM. Maternal transfer of selenomethionine increases developmental toxicities. Aquat Toxicol. 2014;152:20–9. DOI: https://doi.org/10.1016/j.aquatox.2014.03.022

76. Thomas JK, Janz DM. Developmental and persistent toxicities of selenomethionine. Environ Sci Technol. 2015;49(16):10182–9. DOI: https://doi.org/10.1021/acs.est.5b02451

77. Thomas JK, Wiseman S, Giesy JP, Janz DM. Chronic dietary exposure to selenomethionine impairs swim performance. Aquat Toxicol. 2013;130–131:112–22. DOI: https://doi.org/10.1016/j.aquatox.2013.01.009

78. Massé AJ, Thomas JK, Janz DM. Reduced swim performance after waterborne selenite. Comp Biochem Physiol C. 2013;157(3):266–71. DOI: https://doi.org/10.1016/j.cbpc.2012.12.004

79. Naderi M, Ferrari MCO, Chivers DP, Niyogi S. Maternal selenium causes dopaminergic hyperfunction in zebrafish offspring. Environ Sci Technol. 2018;52(22):13574–83. DOI: https://doi.org/10.1021/acs.est.8b04768

80. Naderi M, Salahinejad A, Jamwal A, Chivers DP, Niyogi S. Chronic selenium exposure induces oxidative stress in zebrafish. Environ Sci Technol. 2017;51(21):12879–88. DOI: https://doi.org/10.1021/acs.est.7b03937

81. Li X, Liu H, Li D, Lei H, Wei X, Schlenk D, et al. Dietary selenomethionine alters brain neurotransmitters in zebrafish. Environ Sci Technol. 2021;55(17):11894–905. DOI: https://doi.org/10.1021/acs.est.1c03457

82. Naderi M, Salahinejad A, Ferrari MCO, Niyogi S, Chivers DP. Dopaminergic dysregulation during selenium exposure. Environ Pollut. 2018;237:174–85. DOI: https://doi.org/10.1016/j.envpol.2018.02.033

83. Attaran A, Salahinejad A, Crane AL, Niyogi S, Chivers DP. Selenium alters social and antipredator behavior. Environ Pollut. 2019;246:837–44. DOI: https://doi.org/10.1016/j.envpol.2018.12.090

84. Attaran A, Salahinejad A, Naderi M, Crane AL, Niyogi S, Chivers DP. Chronic selenium exposure affects social learning. Chemosphere. 2020;247:125898. DOI: https://doi.org/10.1016/j.chemosphere.2020.125898

85. Attaran A, Salahinejad A, Naderi M, Crane AL, Chivers DP, Niyogi S. Transgenerational effects of selenium on behavior. Environ Pollut. 2021;286:117289. DOI: https://doi.org/10.1016/j.envpol.2021.117289

86. Benner MJ, Drew RE, Hardy RW, Robison BD. Zebrafish vary in behavioral responses to selenium. Comp Biochem Physiol A. 2010;157(4):310–8. DOI: https://doi.org/10.1016/j.cbpa.2010.07.016

87. Arnold MC, Forte JE, Osterberg JS, Di Giulio RT. Antioxidant rescue of selenomethionine teratogenesis. Arch Environ Contam Toxicol. 2016;70(2):311–20. DOI: https://doi.org/10.1007/s00244-015-0235-7

88. Hauser-Davis RA, Silva JAN, Rocha RCC, Saint’Pierre T, Ziolli RL, Arruda MAZ. Acute selenium exposure in zebrafish. J Trace Elem Med Biol. 2016;33:68–72. DOI: https://doi.org/10.1016/j.jtemb.2015.09.001

89. Ferreira LM, da Rosa LVC, Müller TE, de Menezes CC, Marcondes Sari MH, Loro VL, et al. Zebrafish exposure to diphenyl diselenide-loaded polymeric nanocapsules caused no behavioral impairments and brain oxidative stress. J Trace Elem Med Biol. 2019;53:62–8. DOI: https://doi.org/10.1016/j.jtemb.2019.02.005

90. Benner MJ, Settles ML, Murdoch GK, Hardy RW, Robison BD. Sex-specific transcriptional responses of the zebrafish (Danio rerio) brain selenoproteome to acute sodium selenite supplementation. Physiol Genomics. 2013;45(15):653–66. DOI: https://doi.org/10.1152/physiolgenomics.00030.2013

91. Penglase S, Hamre K, Rasinger JD, Ellingsen S. Selenium status affects selenoprotein expression, reproduction, and F1 generation locomotor activity in zebrafish (Danio rerio). Br J Nutr. 2014;111(11):1918–31. DOI: https://doi.org/10.1017/S000711451300439X

92. Matheus M, Macedo GT de, Prestes AS, Loro VL. Hyperglycemia elicits anxiety-like behaviors in zebrafish: Protective role of dietary diphenyl diselenide. Prog Neuropsychopharmacol Biol Psychiatry. 2018;85:128–35. DOI: https://doi.org/10.1016/j.pnpbp.2018.04.017

Publicado

03/12/2025

Como Citar

SUPLEMENTAÇÃO DE SELÊNIO EM ZEBRAFISH (Danio rerio): UMA REVISÃO INTEGRATIVA. (2025). RECIMA21 -Revista Científica Multidisciplinar - ISSN 2675-6218, 6(12), e6127001. https://doi.org/10.47820/recima21.v6i12.7001