SUPLEMENTAÇÃO DE SELÊNIO EM ZEBRAFISH (Danio rerio): UMA REVISÃO INTEGRATIVA
DOI:
https://doi.org/10.47820/recima21.v6i12.7001Palavras-chave:
Genética, Selênio, ZebrafishResumo
O selênio (Se) é essencial para o funcionamento celular de todos os organismos e desempenha papel protetor dos efeitos nocivos causados pelos radicais livres. O Danio rerio (zebrafish) é um modelo animal muito utilizado em muitas pesquisas, possui diversas vantagens como: semelhança fisiológica com mamíferos, facilidade de manipulação genética, larvas opticamente claras, além disso, são animais altamente férteis, de baixo custo e manutenção devido ao seu tamanho. O objetivo deste trabalho é realizar uma revisão integrativa da literatura disponível sobre o papel e a suplementação de Se em Danio rerio. A revisão foi realizada nas bases de dados Pubmed, BVS, Scopus, Web of Science e Periódico da Capes, realizando uma busca avançada por meio das palavras chaves selecionadas. Mais de 700 artigos foram identificados. Os artigos incluídos foram publicados em inglês, português ou espanhol, a partir do ano de 2005, também foram considerados artigos que avaliaram o papel do Se em zebrafish, considerando o efeito à exposição, genética, comportamento e toxicidade. Selecionou-se 37 artigos experimentais e originais que se adequavam aos objetivos do trabalho. O efeito do Se no zebrafish depende muito da forma e da concentração de Se a que o animal é exposto. Os trabalhos apontam o Se com possível efeito redutor no risco de cânceres, e avaliam o seu potencial na prevenção à toxicidade ao acúmulo de metil mercúrio. Todavia, em doses altas, o selênio, além de causar toxicidade, também altera o comportamento do zebrafish, interferindo no processo de memória, natação e reconhecimento espacial.
Downloads
Referências
1. Davis CD, Tsuji PA, Milner JA. Selenoproteins and Cancer Prevention. Annu Rev Nutr. 2012;32(1):73–95. DOI: https://doi.org/10.1146/annurev-nutr-071811-150740
2. Darvesh A, Bishayee A. Selenium in the Prevention and Treatment of Hepatocellular Carcinoma. Anticancer Agents Med Chem. 2012;10(4):338–45. DOI: https://doi.org/10.2174/187152010791162252
3. Kieliszek M. Selenium–fascinating microelement, properties and sources in food. Molecules. 2019;24(7). DOI: https://doi.org/10.3390/molecules24071298
4. Tamari Y, Kim ES. Longitudinal study of the dietary selenium intake of exclusively breast-fed infants during early lactation in Korea and Japan. J Trace Elem Med Biol. 1999;13(3):129–33. DOI: https://doi.org/10.1016/S0946-672X(99)80002-9
5. Post M, Lubiński W, Lubiński J, Krzystolik K, Baszuk P, Muszyńska M, et al. Serum selenium levels are associated with age-related cataract. Ann Agric Environ Med. 2018;25(3):443–8. DOI: https://doi.org/10.26444/aaem/90886
6. Kieliszek M, Błazejak S. Current knowledge on the importance of selenium in food for living organisms: A review. Molecules. 2016;21(5). DOI: https://doi.org/10.3390/molecules21050609
7. Shahid NM, Niazi NK, Khalid S, Murtaza B, Bibi I, et al. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ Pollut. 2018;234:915–34. DOI: https://doi.org/10.1016/j.envpol.2017.12.019
8. Méplan C, Hesketh J. The influence of selenium and selenoprotein gene variants on colorectal cancer risk. Mutagenesis. 2012;27(2):177–86. DOI: https://doi.org/10.1093/mutage/ger058
9. Bellinger FP, Raman AV, Reeves MA, Berry MJ. Regulation and function of selenoproteins in human disease. Biochem J. 2009;422(1):11–22. DOI: https://doi.org/10.1042/BJ20090219
10. Lu J, Holmgren A. Selenoproteins. J Biol Chem. 2009;284(2):723–7. DOI: https://doi.org/10.1074/jbc.R800045200
11. Abdulah R, Miyazaki K, Nakazawa M, Koyama H. Chemical forms of selenium for cancer prevention. J Trace Elem Med Biol. 2005;19(2–3):141–50. DOI: https://doi.org/10.1016/j.jtemb.2005.09.003
12. El-Bayoumy K, Sinha R. Molecular chemoprevention by selenium: A genomic approach. Mutat Res. 2005;591(1–2):224–36. DOI: https://doi.org/10.1016/j.mrfmmm.2005.04.021
13. Fraczek A, Pasternak K. Selen w medycynie i lecznictwie. J Elem. 2013;18(1):145–63.
14. Kieliszek M, Błazejak S. Selenium: Significance, and outlook for supplementation. Nutrition. 2013;29(5):713–8. DOI: https://doi.org/10.1016/j.nut.2012.11.012
15. Rayman MP. The influence of Selenium on human health. Lancet. 2000;356(9225):233–41. DOI: https://doi.org/10.1016/S0140-6736(00)02490-9
16. Navarro-Alarcon M, Cabrera-Vique C. Selenium in food and the human body: A review. Sci Total Environ. 2008;400(1–3):115–41. DOI: https://doi.org/10.1016/j.scitotenv.2008.06.024
17. Pedrero Z, Madrid Y. Novel approaches for selenium speciation in foodstuffs and biological specimens: A review. Anal Chim Acta. 2009;634(2):135–52. DOI: https://doi.org/10.1016/j.aca.2008.12.026
18. Kryczyk J, Zagrodzki P. Selen w chorobie Gravesa-Basedowa. Postepy Hig Med Dosw. 2013;67:491–8. DOI: https://doi.org/10.5604/17322693.1051000
19. Oropeza-Moe M, Wisløff H, Bernhoft A. Selenium deficiency associated porcine and human cardiomyopathies. J Trace Elem Med Biol. 2015;31:148–56. DOI: https://doi.org/10.1016/j.jtemb.2014.09.011
20. Song M, Kumaran MN, Gounder M, Gibbon DG, Nieves-Neira W, Vaidya A, et al. Phase I trial of selenium plus chemotherapy in gynecologic cancers. Gynecol Oncol. 2018;150(3):478–86. DOI: https://doi.org/10.1016/j.ygyno.2018.07.001
21. Fernández-Martínez A, Charlet L. Selenium environmental cycling and bioavailability: A structural chemist point of view. Rev Environ Sci Biotechnol. 2009;8(1):81–110. DOI: https://doi.org/10.1007/s11157-009-9145-3
22. Nuttall KL. Evaluating selenium poisoning. Ann Clin Lab Sci. 2006;36(4):409–20.
23. Wallenberg M, Misra S, Björnstedt M. Selenium cytotoxicity in cancer. Basic Clin Pharmacol Toxicol. 2014;114(5):377–86. DOI: https://doi.org/10.1111/bcpt.12207
24. Pérez-Corona MT, Sánchez-Martínez M, Valderrama MJ, Rodríguez ME, Cámara C, Madrid Y. Selenium biotransformation by Saccharomyces cerevisiae and Saccharomyces bayanus during white wine manufacture: Laboratory-scale experiments. Food Chem. 2011;124(3):1050–5. DOI: https://doi.org/10.1016/j.foodchem.2010.07.073
25. Pillai R, Uyehara-Lock JH, Bellinger FP. Selenium and selenoprotein function in brain disorders. IUBMB Life. 2014;66(4):229–39. DOI: https://doi.org/10.1002/iub.1262
26. Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C. Therapeutic applications of selenium nanoparticles. Biomed Pharmacother. 2019;111:802–12. DOI: https://doi.org/10.1016/j.biopha.2018.12.146
27. Ibrahim M, Mussulini BHM, Moro L, de Assis AM, Rosemberg DB, de Oliveira DL, et al. Anxiolytic effects of diphenyl diselenide on adult zebrafish. Prog Neuropsychopharmacol Biol Psychiatry. 2014;54:187–94. DOI: https://doi.org/10.1016/j.pnpbp.2014.06.002
28. dos Santos MM, de Macedo GT, Prestes AS, Ecker A, Müller TE, Leitemperger J, et al. Modulation of redox and insulin signaling underlie anti-hyperglycemic and antioxidant effects of diphenyl diselenide in zebrafish. Free Radic Biol Med. 2020;158:20–31. DOI: https://doi.org/10.1016/j.freeradbiomed.2020.06.002
29. Said ES, Ahmed RM, Mohammed RA, Morsi EM, Elmahdi MH, Elsayed HS, et al. Ameliorating effect of melatonin on mercuric chloride-induced neurotoxicity in rats. Heliyon. 2021;7(7):e07485. DOI: https://doi.org/10.1016/j.heliyon.2021.e07485
30. Wu J, Cheng G, Lu Z, Wang M, Tian J, Bi Y. Effects of methyl mercury chloride on rat hippocampus structure. Biol Trace Elem Res. 2016;171(1):124–30. DOI: https://doi.org/10.1007/s12011-015-0492-3
31. Rao MV, Purohit A, Patel T. Melatonin protection on mercury-exerted brain toxicity in the rat. Drug Chem Toxicol. 2010;33(2):209–16. DOI: https://doi.org/10.3109/01480540903349258
32. Sabir S, Saleem U, Akash MSH, Qasim M, Chauhdary Z. Thymoquinone induces Nrf2 mediated adaptive homeostasis: Implication for mercuric chloride-induced nephrotoxicity. ACS Omega. 2022;7(8):7370–9. DOI: https://doi.org/10.1021/acsomega.2c00028
33. Berlin M. Interaction between selenium and inorganic mercury. Environ Health Perspect. 1978;25:67–9. DOI: https://doi.org/10.1289/ehp.782567
34. Parizek J, Ostdalova I, Kalouskova J, Babicky A, Pavlik L, Bibr B. Maternal transmission of selenium in the pregnant and lactating rat. 1970. DOI: https://doi.org/10.1530/jrf.0.0250157
35. Kosta L, Byrne AR, Zelenko V. Correlation between selenium and mercury in man following exposure to inorganic mercury. Nat Publ Gr. 1975. DOI: https://doi.org/10.1038/254238a0
36. Spence R, Gerlach G, Lawrence C, Smith C. The behaviour and ecology of the zebrafish. Biol Rev. 2008;83(1):13–34. DOI: https://doi.org/10.1111/j.1469-185X.2007.00030.x
37. Kinth P, Mahesh G, Panwar Y. Mapping of zebrafish research: A global outlook. Zebrafish. 2013;10(4):510–7. DOI: https://doi.org/10.1089/zeb.2012.0854
38. Lidster K, Readman GD, Prescott MJ, Owen SF. International survey on the use and welfare of zebrafish. J Fish Biol. 2017;90(5):1891–905. DOI: https://doi.org/10.1111/jfb.13278
39. Hörstgen-Schwark G. Production of homozygous diploid zebra fish. Aquaculture. 1993;112(1):25–37. DOI: https://doi.org/10.1016/0044-8486(93)90155-R
40. Aleström P, D’Angelo L, Midtlyng PJ, Schorderet DF, Schulte-Merker S, Sohm F, et al. Zebrafish: Housing and husbandry recommendations. Lab Anim. 2020;54(3):213–24. DOI: https://doi.org/10.1177/0023677219869037
41. Grunwald DJ, Eisen J. Headwaters of the zebrafish. Nat Rev Genet. 2002;3(9):711–7. DOI: https://doi.org/10.1038/nrg892
42. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. The zebrafish reference genome. Nature. 2013;496(7446):498–503. DOI: https://doi.org/10.1038/nature12111
43. Collins JE, White S, Searle SMJ, Stemple DL. Incorporating RNA-seq data into the zebrafish ensembl genebuild. Genome Res. 2012;22(10):2067–78. DOI: https://doi.org/10.1101/gr.137901.112
44. Isenberg HD. Pathogenicity and virulence: another view. Clin Microbiol Rev. 1988;1(1):40–53. DOI: https://doi.org/10.1128/CMR.1.1.40
45. Chu J, Sadler KC. New school in liver development: Lessons from zebrafish. Hepatology. 2009;50(5):1656–63. DOI: https://doi.org/10.1002/hep.23157
46. Astell KR, Sieger D. Zebrafish in vivo models of cancer and metastasis. Cold Spring Harb Perspect Med. 2020;10(8):1–17. DOI: https://doi.org/10.1101/cshperspect.a037077
47. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203(3):253–310. DOI: https://doi.org/10.1002/aja.1002030302
48. Seiler-Hausmann JD, Liedtke C, von Weizsäcker EU. Introduction. Eco-efficiency Beyond. 2017;238(12):9–12. DOI: https://doi.org/10.9774/GLEAF.978-1-909493-40-7_2
49. Menke AL, Spitsbergen JM, Wolterbeek APM, Woutersen RA. Normal anatomy and histology of the adult zebrafish. Toxicol Pathol. 2011;39(5):759–75. DOI: https://doi.org/10.1177/0192623311409597
50. Thomas JK, Janz DM. Dietary selenomethionine exposure in adult zebrafish. Aquat Toxicol. 2011;102(1–2):79–86. DOI: https://doi.org/10.1016/j.aquatox.2010.12.020
51. Janz DM, DeForest DK, Brooks ML, Chapman PM, Gilron G, Hoff D, et al. Selenium toxicity to aquatic organisms. Ecol Assess Selenium Aquat Environ. 2010:141–231. DOI: https://doi.org/10.1201/EBK1439826775-c6
52. Goessling W, Sadler KC. Zebrafish: An Important Tool for Liver Disease Research. Gastroenterology. 2015;149(6):1361–77. DOI: https://doi.org/10.1053/j.gastro.2015.08.034
53. Lieschke GJ, Currie PD. Animal models of human disease: Zebrafish swim into view. Nat Rev Genet. 2007;8(5):353–67. DOI: https://doi.org/10.1038/nrg2091
54. Roberts AC, Bill BR, Glanzman DL. Learning and memory in zebrafish larvae. Front Neural Circuits. 2013;7:1–11. DOI: https://doi.org/10.3389/fncir.2013.00126
55. Goldsmith P. Zebrafish as a pharmacological tool. Curr Opin Pharmacol. 2004;4(5):504–12. DOI: https://doi.org/10.1016/j.coph.2004.04.005
56. Asaoka Y, Terai S, Sakaida I, Nishina H. Role of fish models in NAFLD. Dis Model Mech. 2014;7(3):409. DOI: https://doi.org/10.1242/dmm.016022
57. Willebrords J, Veloso I, Pereira A, Maes M, Yanguas SC, Colle I, et al. Strategies, models and biomarkers in NAFLD research. Prog Lipid Res. 2015;59:106–25. DOI: https://doi.org/10.1016/j.plipres.2015.05.002
58. Yin H, Wang S, Zhang Y, Wu M, Wang JW, Ma Y. Zuogui Pill improves dexamethasone-induced osteoporosis in zebrafish. Biomed Pharmacother. 2018;97:995–9. DOI: https://doi.org/10.1016/j.biopha.2017.11.029
59. Yamashita M, Yamashita Y, Suzuki T, Kani Y, Mizusawa N, Imamura S, et al. Selenoneine mediates detox mechanisms against methylmercury. Mar Biotechnol. 2013;15(5):559–70. DOI: https://doi.org/10.1007/s10126-013-9508-1
60. Bjerregaard P, Fjordside S, Hansen MG, Petrova MB. Dietary selenium reduces retention of methyl mercury in fish. Environ Sci Technol. 2011;45(22):9793–8. DOI: https://doi.org/10.1021/es202565g
61. Amlund H, Lundebye AK, Boyle D, Ellingsen S. Dietary selenomethionine influences methylmercury accumulation in zebrafish. Aquat Toxicol. 2015;158:211–7. DOI: https://doi.org/10.1016/j.aquatox.2014.11.010
62. Penglase S, Hamre K, Ellingsen S. Selenium and mercury have synergistic negative effects on fish reproduction. Aquat Toxicol. 2014;149:16–24. DOI: https://doi.org/10.1016/j.aquatox.2014.01.020
63. Penglase S, Hamre K, Ellingsen S. Selenium prevents downregulation of antioxidant genes by methylmercury. Free Radic Biol Med. 2014;75:95–104. DOI: https://doi.org/10.1016/j.freeradbiomed.2014.07.019
64. Rasinger JD, Lundebye AK, Penglase SJ, Ellingsen S, Amlund H. Methylmercury neurotoxicity and selenium in zebrafish. Int J Mol Sci. 2017;18(4). DOI: https://doi.org/10.3390/ijms18040725
65. Cabezas-Sanchez P, Rainieri S, Conlledo N, Barranco A, Sanz-Landaluze J, Camara C, et al. Impact of selenium on methylmercury exposed zebrafish. Chemosphere. 2019;236:124295. DOI: https://doi.org/10.1016/j.chemosphere.2019.07.026
66. Dolgova NV, Nehzati S, Macdonald TC, Summers KL, Crawford AM, Krone PH, et al. Disruption of selenium transport contributes to mercury toxicity. Metallomics. 2019;11(3):621–31. DOI: https://doi.org/10.1039/c8mt00315g
67. Thomas JK, Janz DM. Embryo microinjection of selenomethionine reduces hatchability. Sci Rep. 2016;6:26520. DOI: https://doi.org/10.1038/srep26520
68. Dolgova NV, Hackett MJ, MacDonald TC, Nehzati S, James AK, Krone PH, et al. Distribution of selenium in zebrafish larvae. Metallomics. 2016;8(3):305–12. DOI: https://doi.org/10.1039/C5MT00279F
69. Liu Z, Chen B, Li X, Wang La, Xiao H, Liu D. Toxicity assessment of zinc, selenium, and strontium. Sci Total Environ. 2019;670:433–8. DOI: https://doi.org/10.1016/j.scitotenv.2019.03.259
70. Zhang X, Wang G, Wang T, Chen J, Feng C, Yun S, et al. Selenomethionine alleviates fluoride toxicity. Aquat Toxicol. 2022;242:106019. DOI: https://doi.org/10.1016/j.aquatox.2021.106019
71. Kalishwaralal K, Jeyabharathi S, Sundar K, Muthukumaran A. Cardiovascular effects of selenium nanoparticles in zebrafish. Artif Cells Nanomed Biotechnol. 2016;44(3):990–6.
72. Kalishwaralal K, Jeyabharathi S, Sundar K, Muthukumaran A. Green synthesis of selenium nanoparticles. Artif Cells Nanomed Biotechnol. 2016;44(2):471–7. DOI: https://doi.org/10.3109/21691401.2014.962744
73. Pettem CM, Weber LP, Janz DM. Cardiac and metabolic effects of dietary selenomethionine. Toxicol Sci. 2017;159(2):449–60. DOI: https://doi.org/10.1093/toxsci/kfx149
74. Zhao G, Zhu Y, Hu J, Gao M, Hong Y. L-selenomethionine induces cardiovascular defects in zebrafish embryos. Chemosphere. 2022;290:133351. DOI: https://doi.org/10.1016/j.chemosphere.2021.133351
75. Thomas JK, Janz DM. Maternal transfer of selenomethionine increases developmental toxicities. Aquat Toxicol. 2014;152:20–9. DOI: https://doi.org/10.1016/j.aquatox.2014.03.022
76. Thomas JK, Janz DM. Developmental and persistent toxicities of selenomethionine. Environ Sci Technol. 2015;49(16):10182–9. DOI: https://doi.org/10.1021/acs.est.5b02451
77. Thomas JK, Wiseman S, Giesy JP, Janz DM. Chronic dietary exposure to selenomethionine impairs swim performance. Aquat Toxicol. 2013;130–131:112–22. DOI: https://doi.org/10.1016/j.aquatox.2013.01.009
78. Massé AJ, Thomas JK, Janz DM. Reduced swim performance after waterborne selenite. Comp Biochem Physiol C. 2013;157(3):266–71. DOI: https://doi.org/10.1016/j.cbpc.2012.12.004
79. Naderi M, Ferrari MCO, Chivers DP, Niyogi S. Maternal selenium causes dopaminergic hyperfunction in zebrafish offspring. Environ Sci Technol. 2018;52(22):13574–83. DOI: https://doi.org/10.1021/acs.est.8b04768
80. Naderi M, Salahinejad A, Jamwal A, Chivers DP, Niyogi S. Chronic selenium exposure induces oxidative stress in zebrafish. Environ Sci Technol. 2017;51(21):12879–88. DOI: https://doi.org/10.1021/acs.est.7b03937
81. Li X, Liu H, Li D, Lei H, Wei X, Schlenk D, et al. Dietary selenomethionine alters brain neurotransmitters in zebrafish. Environ Sci Technol. 2021;55(17):11894–905. DOI: https://doi.org/10.1021/acs.est.1c03457
82. Naderi M, Salahinejad A, Ferrari MCO, Niyogi S, Chivers DP. Dopaminergic dysregulation during selenium exposure. Environ Pollut. 2018;237:174–85. DOI: https://doi.org/10.1016/j.envpol.2018.02.033
83. Attaran A, Salahinejad A, Crane AL, Niyogi S, Chivers DP. Selenium alters social and antipredator behavior. Environ Pollut. 2019;246:837–44. DOI: https://doi.org/10.1016/j.envpol.2018.12.090
84. Attaran A, Salahinejad A, Naderi M, Crane AL, Niyogi S, Chivers DP. Chronic selenium exposure affects social learning. Chemosphere. 2020;247:125898. DOI: https://doi.org/10.1016/j.chemosphere.2020.125898
85. Attaran A, Salahinejad A, Naderi M, Crane AL, Chivers DP, Niyogi S. Transgenerational effects of selenium on behavior. Environ Pollut. 2021;286:117289. DOI: https://doi.org/10.1016/j.envpol.2021.117289
86. Benner MJ, Drew RE, Hardy RW, Robison BD. Zebrafish vary in behavioral responses to selenium. Comp Biochem Physiol A. 2010;157(4):310–8. DOI: https://doi.org/10.1016/j.cbpa.2010.07.016
87. Arnold MC, Forte JE, Osterberg JS, Di Giulio RT. Antioxidant rescue of selenomethionine teratogenesis. Arch Environ Contam Toxicol. 2016;70(2):311–20. DOI: https://doi.org/10.1007/s00244-015-0235-7
88. Hauser-Davis RA, Silva JAN, Rocha RCC, Saint’Pierre T, Ziolli RL, Arruda MAZ. Acute selenium exposure in zebrafish. J Trace Elem Med Biol. 2016;33:68–72. DOI: https://doi.org/10.1016/j.jtemb.2015.09.001
89. Ferreira LM, da Rosa LVC, Müller TE, de Menezes CC, Marcondes Sari MH, Loro VL, et al. Zebrafish exposure to diphenyl diselenide-loaded polymeric nanocapsules caused no behavioral impairments and brain oxidative stress. J Trace Elem Med Biol. 2019;53:62–8. DOI: https://doi.org/10.1016/j.jtemb.2019.02.005
90. Benner MJ, Settles ML, Murdoch GK, Hardy RW, Robison BD. Sex-specific transcriptional responses of the zebrafish (Danio rerio) brain selenoproteome to acute sodium selenite supplementation. Physiol Genomics. 2013;45(15):653–66. DOI: https://doi.org/10.1152/physiolgenomics.00030.2013
91. Penglase S, Hamre K, Rasinger JD, Ellingsen S. Selenium status affects selenoprotein expression, reproduction, and F1 generation locomotor activity in zebrafish (Danio rerio). Br J Nutr. 2014;111(11):1918–31. DOI: https://doi.org/10.1017/S000711451300439X
92. Matheus M, Macedo GT de, Prestes AS, Loro VL. Hyperglycemia elicits anxiety-like behaviors in zebrafish: Protective role of dietary diphenyl diselenide. Prog Neuropsychopharmacol Biol Psychiatry. 2018;85:128–35. DOI: https://doi.org/10.1016/j.pnpbp.2018.04.017
Downloads
Publicado
Licença
Direitos de Autor (c) 2025 RECIMA21 -Revista Científica Multidisciplinar - ISSN 2675-6218

Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição 4.0.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECIMA21, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECIMA21 apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.








