RECUPERAÇÃO DE POTÁSSIO DE MICAS DE FLOGOPITA: MECANISMOS, POTENCIAL AGRONÔMICO E LACUNAS DE PESQUISA – UMA REVISÃO

Autores

  • Antonio Clareti Pereira Federal University of Ouro Preto (UFOP)

DOI:

https://doi.org/10.47820/recima21.v6i12.7091

Palavras-chave:

Flogopita. Potássio. Solubilização mineral. Agricultura sustentável. Remineralização do solo.

Resumo

A flogopita, uma mica potássica rica em magnésio, tem ganhado destaque recente como uma fonte alternativa de potássio (K) para a agricultura sustentável. Diferentemente dos fertilizantes convencionais baseados em sais solúveis, como o cloreto de potássio (KCl), a flogopita é abundante em rochas ultramáficas e pegmatíticas e pode atuar como uma fonte de liberação lenta de K. Esta revisão examina criticamente as propriedades físico-químicas da flogopita, seu comportamento de intemperismo e suas potenciais aplicações agronômicas. Ênfase especial é dada aos avanços recentes em técnicas de ativação térmica, mecanocímica, microbiana e química que aumentam a liberação de potássio. Ensaios agronômicos demonstram resultados promissores em diversas culturas e condições de solo. No entanto, persistem vários desafios, incluindo baixa solubilidade natural, altos custos energéticos de ativação e pouca exploração das reservas globais. Identificam-se lacunas de pesquisa relacionadas à cinética de liberação de K em condições de campo, aos impactos ambientais das rotas de processamento e à escalabilidade das tecnologias de ativação. Esta revisão destaca a flogopita como um recurso promissor na transição para fontes de potássio mais resilientes e produzidas localmente na agricultura.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Antonio Clareti Pereira, Federal University of Ouro Preto (UFOP)

    Ph.D. in Chemical Engineering, Federal University of Ouro Preto (UFOP) – Department of Graduate Program in Materials Engineering, Ouro Preto, MG, Brazil.

     

Referências

ALMEIDA, J. A.; CUNHA, G. O. M.; HEBERLE, D. A. et al. Potential of olivine melilitite as a soil remineralizer according to particle size and rates. Pesquisa Agropecuária Brasileira, v. 57, e03007, 2022. https://doi.org/10.1590/S1678-3921.pab2022.v57.01445 DOI: https://doi.org/10.1590/s1678-3921.pab2022.v57.01445

ASHFAQ, M. Potassium solubilization by indigenous rhizobacteria isolated from saline soil and their impact on early growth and macronutrient concentrations in paddy crop (Oryza sativa L. var. MRIA 1) 2022. Doctoral (dissertation) - Universiti Sains Malaysia, 2022. https://erepo.usm.my/handle/123456789/18543

ASHRAFI-SAEIDLOU, S.; RAZAVI, R.; KHOSRAVI, H.; KHADEMI, H. Potassium release by Aspergillus niger from phlogopite during incubation. Heliyon, v. 10, e19567, 2024. https://doi.org/10.1016/j.heliyon.2024.e19567 DOI: https://doi.org/10.1016/j.heliyon.2024.e29117

BARŁÓG, P.; GRZEBISZ, W.; ŁUKOWIAK, R. Fertilizers and fertilization strategies mitigating soil factors constraining efficiency of nitrogen in plant production. Plants, v. 11, n. 14, 1855, 2022. https://doi.org/10.3390/plants11141855 DOI: https://doi.org/10.3390/plants11141855

BASAK, B. B. Waste mica as alternative source of plant-available potassium: Evaluation of agronomic potential through chemical and biological methods. Natural Resources Research, v. 28, p. 953–965, 2019. https://doi.org/10.1007/s11053-018-9430-3 DOI: https://doi.org/10.1007/s11053-018-9430-3

BASAK, B. B.; MAITY, A.; RAY, P.; BISWAS, D. R.; ROY, S. Potassium supply in agriculture through biological potassium fertilizer: A promising and sustainable option for developing countries. Archives of Agronomy and Soil Science, v. 68, n. 1, p. 101–114, 2022. https://doi.org/10.1080/03650340.2020.1821191 DOI: https://doi.org/10.1080/03650340.2020.1821191

BASAK, B. B.; RAY, P.; BISWAS, D. R. Emerging threat of potassium mining in Indian soils: Harnessing the potential of low-grade mica minerals through microbial intervention. In: Biofertilizers, p. 181–204, 2021. DOI: https://doi.org/10.1016/B978-0-12-821667-5.00002-6

BECHELENI, E. M. A.; PEREIRA, A. C.; GOMES, M. R. S.; ROCHA, S. D. F. Slow-release fertilizer from a rock containing glauconite by thermal processing with additives. In: SILVA, H. C. (Ed.). Estudos (Inter) Multidisciplinares nas Engenharias 2. São Paulo: Atena Editora, 2019. p. 179–190. https://repositorio.ufmg.br/server/api/core/bitstreams/d578048e-0dde-4184-be9b-1c5dbe810668/content

BOUHIA, Y.; HAFIDI, M.; OUHDOUCH, Y.; EL BOUKHARI, M. E. M.; MPHATSO, C.; ZEROUAL, Y.; LYAMLOULI, K. Conversion of waste into organo-mineral fertilizers: Current technological trends and prospects. Reviews in Environmental Science and Bio/Technology, v. 21, p. 425–446, 2022. https://doi.org/10.1007/s11157-022-09619-y DOI: https://doi.org/10.1007/s11157-022-09619-y

BUSS, W.; WURZER, C.; MANNING, D. A. C.; ROHLING, E. J. Mineral-enriched biochar delivers enhanced nutrient recovery and carbon dioxide removal. Communications Earth & Environment, v. 3, n. 1, p. 1–9, 2022. https://doi.org/10.1038/s43247-022-00386-1 DOI: https://doi.org/10.1038/s43247-022-00394-w

CHEN, M.; ZHAO, L.; HUANG, Y. et al. Review on K-feldspar mineral processing for extracting metallic potassium as a fertilizer resource. Minerals, v. 14, n. 1, p. 1–20, 2024. https://doi.org/10.3390/min14010020 DOI: https://doi.org/10.3390/min14020168

CHEN, Y.; YANG, H.; SHEN, Z.; YE, J. Whole-genome sequencing and potassium-solubilizing mechanism of Bacillus aryabhattai SK1-7. Frontiers in Microbiology, v. 12, 722379, 2022. https://doi.org/10.3389/fmicb.2021.722379 DOI: https://doi.org/10.3389/fmicb.2021.722379

CICERI, D.; CLOSE, T. C.; BARKER, A. V. et al. Fertilizing properties of potassium feldspar altered hydrothermally. Communications in Soil Science and Plant Analysis, v. 50, n. 11, 1361–1373, 2019. https://doi.org/10.1080/00103624.2019.1615955 DOI: https://doi.org/10.1080/00103624.2019.1566922

CORDEIRO, C. M. Situating the discourse of recycled nutrient fertilizers in the circular economy. Frontiers in Sustainable Food Systems, v. 8, 1465752, 2024. https://doi.org/10.3389/frsus.2024.1465752 DOI: https://doi.org/10.3389/frsus.2024.1465752

DHILLON, J. S.; EICKHOFF, E. M.; MULLEN, R. W.; RAUN, W. R. World potassium use efficiency in cereal crops. Agronomy Journal, v. 111, n. 2, p. 889–897, 2019. https://doi.org/10.2134/agronj2018.07.0462 DOI: https://doi.org/10.2134/agronj2018.07.0462

FAVEL, C. M.; DU PLESSIS, B. J. Kinetic parameters for nitric acid leaching of phlogopite. Clays and Clay Minerals, v. 70, p. 547–561, 2022. https://doi.org/10.1007/s42860-022-00168-6 DOI: https://doi.org/10.1007/s42860-022-00180-x

FOMINA, M.; SKOROCHOD, I. Microbial interaction with clay minerals and its environmental and biotechnological implications. Minerals, v. 10, n. 10, 861, 2020. https://doi.org/10.3390/min10100861 DOI: https://doi.org/10.3390/min10100861

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS. World fertilizer trends and outlook to 2022. [S. l.]: FAO, 2019. https://www.fao.org/3/ca6746en/ca6746en.pdf

GABIRA, M. M.; WALTER, L. S.; ALVES, R. C.; SCHNEIDER, C. R. Remineralizer and controlled-release fertilizer increase Mimosa scabrella Benth. seedlings growth. Research, Society and Development, v. 11, n. 2, e3921122566, 2022. https://doi.org/10.33448/rsd-v11i2.22566

GHOSH, S.; CHAKRABORTY, S.; BANERJEE, S.; MONDAL, G.; BASU, R. Geogenic perspectives on potassium dynamics and plant uptake: Insights from natural and submerged conditions across different soil types with machine learning predictions. Frontiers in Soil Science, v. 4, 1539477, 2025. https://doi.org/10.3389/fsoil.2025.1539477 DOI: https://doi.org/10.3389/fsoil.2025.1539477

GOMES, M. R. S.; PEREIRA, A. C.; ROCHA, S. D. F. Biotite-bearing rock as an alternative potassium source for fertilizer after thermal processing with additives. Holos Environment, v. 19, n. 4, p. 502–514, 2019. https://doi.org/10.14295/holos.v19i4.12323 DOI: https://doi.org/10.14295/holos.v19i4.12323

GONÇALVES, A. O.; LADEIRA, E. C.; DINI, F. P. The distribution of rare metals in the LCT pegmatites from Brazil, including the abundance of muscovite. Minerals, v. 9, n. 10, 580, 2019. https://doi.org/10.3390/min9100580 DOI: https://doi.org/10.3390/min9100580

GRAMS, S. E.; REHWALDT, J. Mandatory fertilizer regulations: A survey of state and federal laws. William & Mary Environmental Law and Policy Review, v. 49, n. 2, 299, 2025. https://scholarship.law.wm.edu/wmelpr/vol49/iss2/2

INTERNATIONAL FERTILIZER ASSOCIATION. Medium-term fertilizer outlook 2023–2027. [S. l.]: IFA, 2023. https://www.fertilizer.org

INTERNATIONAL FERTILIZER ASSOCIATION. Short-term fertilizer outlook 2024–2025. [S. l.]: IFA, 2025. https://www.fertilizer.org/wp-content/uploads/2025/02/2024_ifa_short_term_outlook_report.pdf

JAFARI, F.; KHADEMI, H.; SHAHROKH, V.; CANO, A. F.; ACOSTA, J. A. Biological weathering of phlogopite during enriched vermicomposting. Pedosphere, v. 31, n. 6, p. 827–838, 2021. https://doi.org/10.1016/S1002-0160(21)60056-5 DOI: https://doi.org/10.1016/S1002-0160(20)60083-2

JENA, S. K. A review on potash recovery from different rock and mineral sources. Mining, Metallurgy & Exploration, v. 38, n. 1, p. 183–201, 2021. https://doi.org/10.1007/s42461-020-00311-6 DOI: https://doi.org/10.1007/s42461-020-00286-7

KHALIFA, A. Z.; CIZER, Ö.; PONTIKES, Y.; HEATH, A.; PATUREAU, P.; BERNAL, S. A.; MARSH, A. T. M. Advances in alkali activation of clay minerals. Cement and Concrete Research, v. 136, 106050, 2020. https://doi.org/10.1016/j.cemconres.2020.106050 DOI: https://doi.org/10.1016/j.cemconres.2020.106050

KOME, G. K.; ENANG, R. K.; TABI, F. O.; YERIMA, B. P. K. Influence of clay minerals on some soil fertility attributes: A review. Open Journal of Soil Science, v. 9, n. 9, p. 239–251, 2019. https://doi.org/10.4236/ojss.2019.99010 DOI: https://doi.org/10.4236/ojss.2019.99010

LEE, C. H.; DAS, S.; PARK, M. H.; KIM, S. Y.; KIM, P. J. Long-term application of silicate fertilizer alters microbe-mediated phosphorus cycling in paddy soils. Agriculture, Ecosystems & Environment, v. 374, 109175, 2024. https://doi.org/10.1016/j.agee.2024.109175 DOI: https://doi.org/10.1016/j.agee.2024.109175

LEIVA, H.; GONZÁLEZ, I.; ROJAS, L. et al. Sustainable potassium nitrate production through industrial symbiosis: Reducing environmental footprint by integrating waste heat and by-products from existing plants. Sustainability, v. 17, n. 9, 3866, 2025. https://doi.org/10.3390/su17093866 DOI: https://doi.org/10.3390/su17093866

LIU, M.; SMITH, A.; JOHNSON, P.; WANG, H.; LI, X. Farmer willingness to adopt phosphorus and potassium management practices: Evidence from choice experiments. In: Proceedings of the AAEA Annual Meeting. New Orleans, USA: [s. n.], 2025, July 27–30. https://ageconsearch.umn.edu/record/361198

LODI, L. A.; KLAIC, R.; RIBEIRO, C.; FARINAS, C. S. A green K-fertilizer using mechanical activation to improve the solubilization of a low-reactivity potassium mineral by Aspergillus niger. Bioresource Technology Reports, v. 13, 100630, 2021. https://doi.org/10.1016/j.biteb.2021.100630 DOI: https://doi.org/10.1016/j.biteb.2021.100711

LYONS, S. E. Field trial guidelines for evaluating enhanced efficiency fertilizers (EEFs). Soil Science Society of America Journal, 2025. https://doi.org/10.1002/saj2.20787 DOI: https://doi.org/10.1002/saj2.20787

MBISSIK, A.; ELGHALI, A.; OUABID, M. et al. Alkali-hydrothermal treatment of K-rich igneous rocks for their direct use as potassic fertilizers. Minerals, v. 11, n. 2, 140, 2021. https://doi.org/10.3390/min11020140 DOI: https://doi.org/10.3390/min11020140

MORAN, J.; MCGRATH, C. Comparison of methods for mapping rhizosphere processes in the context of their surrounding root and soil environments. BioTechniques, v. 71, n. 6, p. 604–614, 2021. https://doi.org/10.2144/btn-2021-0021 DOI: https://doi.org/10.2144/btn-2021-0021

NANDA, M.; CORDELL, D.; KANSAL, A. Assessing national vulnerability to phosphorus scarcity to build food system resilience: The case of India. Journal of Environmental Management, v. 240, p. 511–517, 2019. https://doi.org/10.1016/j.jenvman.2019.03.115 DOI: https://doi.org/10.1016/j.jenvman.2019.03.115

ORLANDELLA, I.; FIORE, S. Life-cycle assessment of the production of biofertilizers from agricultural waste. Sustainability, v. 17, n. 2, 421, 2025. https://doi.org/10.3390/su17020421 DOI: https://doi.org/10.3390/su17020421

PEREIRA, A. C.; CARVALHO, I. S. B. et al. Glauconite-bearing rocks as alternative potassium source for fertilizer by thermal processing with additives. Brazilian Applied Science Review, v. 3, n. 6, p. 1594–1606, 2019. https://ojs.brazilianjournals.com.br/ojs/index.php/BASR/article/view/1812 DOI: https://doi.org/10.34115/basrv3n2-050

PEREIRA, A. C.; FONSECA, R. B. C. Potassium solubilization in micas by thermal and acid processes: Advances and perspectives. Studies in Engineering and Exact Sciences, v. 6, n. 2, e005, 2025. https://doi.org/10.54021/seesv6n2-005 DOI: https://doi.org/10.54021/seesv6n2-005

PEREIRA, A. C.; FONSECA, R. B. C.; SANTOS, J. R. Muscovite mica as an alternative source of potassium: Advances, challenges, and future directions – A critical review. Minerals Engineering, v. 235, Part 2, 109873, 2026. https://doi.org/10.1016/j.mineng.2025.109873 DOI: https://doi.org/10.1016/j.mineng.2025.109873

PEREIRA, A. C.; SANTOS, J. R.; FONSECA, R. B. C. Alternative sources of potassium from potassium feldspars, from mining to cropping: A review. International Journal of Advanced Research, v. 13, n. 8, p. 492–502, 2025. https://doi.org/10.21474/IJAR01/21540 DOI: https://doi.org/10.21474/IJAR01/21540

POONPAKDEE, C.; WENG, C. H.; WOLDE, G. S.; CHEN, Y. C.; TZENG, J. H. Soil potassium adsorption and speciation dynamics with associated clay microstructural changes revealed by synchrotron X-ray microscopy. Scientific Reports, v. 15, 33017, 2025. https://doi.org/10.1038/s41598-025-18494-w DOI: https://doi.org/10.1038/s41598-025-18494-w

RANI, K.; BISWAS, D. R.; BHATTACHARYYA, R. et al. Bio-activation of waste mica through potassium solubilizing bacteria and rice residue. Indian Journal of Agricultural Sciences, v. 92, n. 4, p. 498–503, 2022. DOI: https://doi.org/10.56093/ijas.v92i1.120843

REUTERS. Commodity market data: Potash supply nears pre-war levels, pushing producers to cut output. Reuters, 23 October 2024. https://www.reuters.com/markets/commodities/potash-supply-nears-pre-war-levels-pushing-producers-cut-output-2024-10-23/

REZAEINEJAD, R.; KHADEMI, H.; AYOUBI, S.; MOSADDEGHI, M. R. Roots under water stress induce K release from phlogopite, bio-transforming to vermiculite. Rhizosphere, 18, 100341. https://doi.org/10.1016/j.rhisph.2021.100341 DOI: https://doi.org/10.1016/j.rhisph.2021.100341

Said, A., Trabelsi-Ayedi, M., Srsra, E., & Srasra, M. (2018). Mechanochemical activation of phlogopite to directly produce slow-release potassium fertilizer. Applied Clay Science, v. 157, p. 47–52, 23. https://doi.org/10.1016/j.clay.2018.02.013 DOI: https://doi.org/10.1016/j.clay.2018.02.013

SAMANTRAY, J.; ANAND, A.; DASH, B.; GHOSH, M. K.; BEHERA, A. K. Silicate minerals: Potential source of potash—A review. Minerals Engineering, v. 179, p. 107463, 2022. https://doi.org/10.1016/j.mineng.2022.107463 DOI: https://doi.org/10.1016/j.mineng.2022.107463

SCHRÖDER, J. J.; TEN BERGE, H. F. M.; BAMPA, F.; CREAMER, R. E.; GIRALDEZ-CERVERA, J. V.; HENRIKSEN, C. B. Multi-functional land use is not self-evident for European farmers: A critical review. Frontiers in Environmental Science, v. 8, p. 575466, 2020. https://doi.org/10.3389/fenvs.2020.575466 DOI: https://doi.org/10.3389/fenvs.2020.575466

SHIRALE, A. O.; MEENA, B. P.; GURAV, P. P.; SRIVASTAVA, S.; BISWAS, A. K.; THAKUR, J. K. Prospects and challenges in utilization of indigenous rocks and minerals as source of potassium in farming. Journal of Plant Nutrition, v. 42, n. 19, p. 2682–2701, 2019. https://doi.org/10.1080/01904167.2019.1659353 DOI: https://doi.org/10.1080/01904167.2019.1659353

SMOL, M. Transition to circular economy in the fertilizer sector: Harmonizing regulations for recycled nutrient sources. Energies, v. 14, n. 14, p. 4312, 2021. https://doi.org/10.3390/en14144312 DOI: https://doi.org/10.3390/en14144312

SWOBODA, P.; DÖRING, T. F.; HAMER, M. Remineralizing soils? The agricultural usage of silicate rock powders: A review. Science of the Total Environment, v. 807, 150778, 2022. https://doi.org/10.1016/j.scitotenv.2021.150778 DOI: https://doi.org/10.1016/j.scitotenv.2021.150976

TANGULER-BAYRAMTAN, M.; AKTAS, C. B.; YAMAN, I. O. Environmental assessment of calcium sulfoaluminate cement: A Monte Carlo simulation in an industrial symbiosis framework. Buildings, v. 14, n. 11, 3673, 2024. https://doi.org/10.3390/buildings14113673 DOI: https://doi.org/10.3390/buildings14113673

U.S. Geological Survey. Mineral commodity summaries 2025: Potash. U.S. Geological Survey, 2025. https://pubs.usgs.gov/periodicals/mcs2025/mcs2025-potash.pdf

VAN DER BAUWHEDE, R.; VERBRUGGEN, E.; VANDAMME, E. et al. Accelerated weathering of silicate rock dusts predicts the slow-release liming in soils depending on rock mineralogy, soil acidity, and test methodology. Chemosphere, v. 348, 139312, 2024. https://doi.org/10.1016/j.geoderma.2023.116734 DOI: https://doi.org/10.1016/j.geoderma.2023.116734

XU, Z.; LI, J.; MA, J. Impacts of extension contact on the adoption of formulated fertilizers and farm performance among large-scale farms in rural China. Land, v. 11, n. 11, 1974, 2022. https://doi.org/10.3390/land11111974 DOI: https://doi.org/10.3390/land11111974

ZHUANG, Y.; WANG, H.; TAN, F.; WU, B.; LIU, L.; QIN, H.; YANG, Z.; HE, M. Rhizosphere metabolic cross-talk from plant–soil–microbe tapping into agricultural sustainability: Current advances and perspectives. Plant Physiology and Biochemistry, v. 210, 108619, 2022. https://doi.org/10.1016/j.plaphy.2024.108619. DOI: https://doi.org/10.1016/j.plaphy.2024.108619

Downloads

Publicado

17/12/2025

Como Citar

RECUPERAÇÃO DE POTÁSSIO DE MICAS DE FLOGOPITA: MECANISMOS, POTENCIAL AGRONÔMICO E LACUNAS DE PESQUISA – UMA REVISÃO. (2025). RECIMA21 -Revista Científica Multidisciplinar - ISSN 2675-6218, 6(12), e6127091. https://doi.org/10.47820/recima21.v6i12.7091