RECOGNITION OF DISEASES IN APPLE TREE LEAVES USING BAG OF FEATURES AND SVM WITH VISUAL VOCABULARY VARIATION

Authors

DOI:

https://doi.org/10.47820/recima21.v7i2.7212

Keywords:

Computer vision. Bag of Features. SVM (Support Vector Machine). Plant diseases

Abstract

Automatic recognition of plant diseases has become a fundamental tool for precision agriculture, especially in crops of high commercial value, such as apple trees (Malus domestica). In this work, a classification approach based on the Bag of Features (BoF) model combined with Support Vector Machines (SVM) is proposed and applied to the Apple Tree Leaf dataset, which contains four pathological classes: Alternaria leaf spot, Brown spot, Gray spot, and Rust. The study is distinguished by a systematic investigation of the impact of visual vocabulary size during the feature quantization stage, evaluating five BoF configurations (100, 300, 700, 1000, and 3000 words). The experiments, conducted in MATLAB R2023b, reveal that intermediate vocabularies—particularly between 700 and 1000 terms—provide the best trade-off between discriminative power and generalization capability, resulting in high accuracy rates for most classes. Nevertheless, the Gray spot class exhibited greater difficulty in recognition, reinforcing the need for complementary strategies for its discrimination. The findings confirm the effectiveness of classical computer vision methods on moderately sized datasets and provide relevant insights for the development of leaf diagnosis systems applied to agricultural contexts.

Downloads

Download data is not yet available.

Author Biographies

  • Leandro Aureliano da Silva, UNIUBE/Engenharia

    Doutor em Engenharia Elétrica pela Universidade Federal de Uberlândia (2018), com mestrado pela USP (2007) e graduação pela Universidade de Uberaba (2001). Atua em pesquisa e ensino nas áreas de IoT aplicada, automação, instrumentação eletrônica, inteligência artificial e visão computacional. Atualmente é Professor e Gestor de Curso na Universidade de Uberaba – UNIUBE, docente do Mestrado Profissional em Engenharia Química e Editor-Chefe da Revista RETII.

  • Eduardo Silva Vasconcelos, Instituto Federal Goiano

    Doutor em Ciências pela UFU, mestre em Matemática pela UFG e em Educação Superior pela UNITRI, com graduações em Matemática, Administração e Gestão do Agronegócio. Possui diversas especializações nas áreas de Matemática, Estatística, Inteligência Artificial, Gestão do Conhecimento, Big Data e Administração Pública. Atua na educação desde 1990 e, desde 2014, é Diretor-Geral do Instituto Federal Goiano – Campus Cristalina, com experiência em ensino, pesquisa e gestão educacional.

  • Adriano Dawison de Lima, UNIUBE/Engenharia

    Graduado em Matemática pela Universidade de Uberaba (2004), com mestrado (2006) e doutorado (2009) em Energia na Agricultura pela UNESP. Atua como professor na Universidade de Uberaba, com experiência em ensino e pesquisa na área de Matemática Aplicada. Desenvolve atividades principalmente em Álgebra Linear, Geometria Analítica, Cálculo, Estatística Inferencial e Otimização de Sistemas.

  • Edilberto Pereira Teixeira, UNIUBE/Engenharia

    Engenheiro eletricista com graduação e mestrado pela Universidade Federal de Itajubá e doutorado pela UNICAMP. Possui ampla experiência em Engenharia Elétrica, com ênfase em controle de processos, sistemas elétricos de potência, lógica nebulosa e redes neurais. Atualmente é professor do curso de Engenharia Elétrica da Universidade de Uberaba – UNIUBE.

References

ABADE, André; FERREIRA, Paulo Afonso; VIDAL, Flavio de Barros. Plant diseases recognition on images using convolutional neural networks: a systematic review. Computers and Electronics in Agriculture, v. 185, p. 106125, jun. 2021. DOI: 10.1016/j.compag.2021.106125. DOI: https://doi.org/10.1016/j.compag.2021.106125

BARBEDO, J. G. A. A review on the main challenges in automatic plant disease identification based on visible range images. Biosystems Engineering, v. 144, p. 52-60, 2016. DOI: 10.1016/j.biosystemseng.2016.01.017 DOI: https://doi.org/10.1016/j.biosystemseng.2016.01.017

BURGES, Christopher J. C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, v. 2, p. 121–167, 1998. DOI: 10.1023/A:1009715923555. Disponível em: https://doi.org/10.1023/A:1009715923555. Acesso em: 3 fev. 2026. DOI: https://doi.org/10.1023/A:1009715923555

CORTES, Corinna; VAPNIK, Vladimir. Support-vector networks. Machine Learning, v. 20, n. 3, p. 273–297, 1995. DOI: 10.1007/BF00994018. Disponível em: https://doi.org/10.1007/BF00994018. Acesso em: 3 fev. 2026 DOI: https://doi.org/10.1023/A:1022627411411

CSURKA, Gabriella; DANCE, Christopher R.; FAN, Lixin; WILLAMOWSKI, Jutta; BRAY, Cédric. Visual categorization with bags of keypoints. In: EUROPEAN CONFERENCE ON COMPUTER VISION (ECCV), 8., 2004, Prague. Proceedings… Workshop on Statistical Learning in Computer Vision. Xerox Research Centre Europe (XRCE), 2004. p. 1–22. Disponível em: https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/csurka-eccv-04.pdf. Acesso em: 1 fev. 2026.

FERENTINOS, K. P. Deep learning models for plant disease detection and diagnosis. Computers and Electronics in Agriculture, v. 145, p. 311–318, 2018. DOI: 10.1016/j.compag.2018.01.009 DOI: https://doi.org/10.1016/j.compag.2018.01.009

HUANG, Yongzhen; WU, Zifeng; WANG, Liang; TAN, Tieniu. Feature coding in image classification: a comprehensive study. IEEE Transactions on Pattern Analysis and Machine Intelligence, v. 36, n. 3, p. 493–506, 2014. DOI: 10.1109/TPAMI.2013.113. Disponível em: https://doi.org/10.1109/TPAMI.2013.113. Acesso em: 2 fev. 2026. DOI: https://doi.org/10.1109/TPAMI.2013.113

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. Nature, v. 521, n. 7553, p. 436–444, 2015. DOI: 10.1038/nature14539. DOI: https://doi.org/10.1038/nature14539

MOHANTY, S. P.; HUGHES, D. P.; SALATHÉ, M. Using deep learning for image-based plant disease detection. Frontiers in Plant Science, v. 7, art. 1419, 2016. DOI: 10.3389/fpls.2016.01419 DOI: https://doi.org/10.3389/fpls.2016.01419

NOWAK, Eric; JURIE, Frédéric; TRIGGS, Bill. Sampling strategies for bag-of-features image classification. In: EUROPEAN CONFERENCE ON COMPUTER VISION (ECCV), 9., 2006. Proceedings… Berlin: Springer, 2006. p. 490–503. (Lecture Notes in Computer Science). DOI: 10.1007/11744085_38. Disponível em: https://doi.org/10.1007/11744085_38. Acesso em: 3 fev. 2026. DOI: https://doi.org/10.1007/11744085_38

PAWARA, Pornntiwa; OKAFOR, Emmanuel; SURINTA, Olarik; SCHOMAKER, Lambertus; WIERING, Marco. Comparing Local Descriptors and Bags of Visual Words to Deep Convolutional Neural Networks for Plant Recognition. In: INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS (ICPRAM), 6., 2017, Porto. Proceedings… [S. l.]: SciTePress, 2017. p. 479–486. DOI: 10.5220/0006196204790486. Disponível em: https://www.scitepress.org/papers/2017/61962/61962.pdf. Acesso em: 1 fev. 2026. DOI: https://doi.org/10.5220/0006196204790486

PIRES, Rillian Diello Lucas; GONÇALVES, Diogo Nunes; ORUÊ, Jonatan Patrick Margarido; KANASHIRO, Wesley Eiji Sanches; RODRIGUES JR., Jose F.; MACHADO, Bruno Brandoli; GONÇALVES, Wesley Nunes. Local descriptors for soybean disease recognition. Computers and Electronics in Agriculture, v. 125, p. 48–55, 2016. DOI: 10.1016/j.compag.2016.04.032. DOI: https://doi.org/10.1016/j.compag.2016.04.032

YANG, Jun; JIANG, Yu-Gang; HAUPTMANN, Alexander G.; NGO, Chong-Wah. Evaluating bag-of-visual-words representations in scene classification. In: INTERNATIONAL WORKSHOP ON MULTIMEDIA INFORMATION RETRIEVAL (MIR), 2007. Proceedings… New York: ACM, 2007. p. 197–206. DOI: 10.1145/1290082.1290111. Disponível em: https://doi.org/10.1145/1290082.1290111. Acesso em: 3 fev. 2026. DOI: https://doi.org/10.1145/1290082.1290111

ZHONG, Yong; ZHAO, Ming. Research on deep learning in apple leaf disease recognition. Computers and Electronics in Agriculture, v. 168, art. 105146, 2020. DOI: 10.1016/j.compag.2019.105146. Disponível em: https://doi.org/10.1016/j.compag.2019.105146. Acesso em: 3 fev. 2026. DOI: https://doi.org/10.1016/j.compag.2019.105146

Published

11/02/2026

How to Cite

Aureliano da Silva, L., Silva Vasconcelos, E., Dawison de Lima, A., & Pereira Teixeira, E. (2026). RECOGNITION OF DISEASES IN APPLE TREE LEAVES USING BAG OF FEATURES AND SVM WITH VISUAL VOCABULARY VARIATION. RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 7(2), e727212. https://doi.org/10.47820/recima21.v7i2.7212