ALZCHECK: INTELLIGENT SYSTEM TO SUPPORT THE EARLY DIAGNOSIS OF ALZHEIMER'S DISEASE

Authors

DOI:

https://doi.org/10.47820/recima21.v7i2.7312

Keywords:

Alzheimer’s disease, Clinical decision support system, Machine Learning

Abstract

This work presents AlzCheck, an intelligent decision support system for early diagnosis of Alzheimer’s disease, designed with emphasis on predictive performance, interpretability, and clinical usability. The system employs a supervised Random Forest model to classify patients into Non-Alzheimer and Alzheimer groups from structured clinical data, achieving an overall accuracy of 95. The solution is built on a microservices architecture integrated through a RESTful API, with independent modules for authentication, user management, medical data handling, prediction, explanation, and report generation, which supports scalability, modularity, and secure data management. In addition to prediction, AlzCheck incorporates a textual explanation service powered by a generative language model that converts model outputs into understandable descriptions and care recommendations in natural language. The results suggest that the system is a promising tool to support the early diagnosis of Alzheimer’s disease and to facilitate the integration of AI-based solutions into real clinical environments.

Downloads

Download data is not yet available.

Author Biographies

  • Letícia Maria Bandeira de Lucena, UFERSA

    Bacharela em Sistemas de Informação pela Universidade Federal Rural do Semi-Árido (UFERSA).

  • Luiz Fernando da Cunha Silva, UFERSA

    Bacharel em Sistemas de Informação pela Universidade Federal Rural do Semi-Árido - UFERSA. Pesquisador Colaborador do Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos-SP.

  • Samara Martins Nascimento Gonçalves, UFERSA

    Doutora em Ciência da Computação pela Universidade Federal do Ceará (UFC). Professora da Universidade Federal Rural do Semi-Árido - UFERSA, Angicos-RN.

  • Verônica Maria Lima Silva, UFPB

    Doutora em Engenharia Elétrica pela Universidade Federal de Campina Grande (UFCG). Professora da Universidade Federal da Paraíba (UFPB), João Pessoa-PB.

References

ALATRANY, A. S.; KHAN, W.; HUSSAIN, A. et al. An explainable machine learning approach for Alzheimer’s disease classification. Scientific Reports, v. 14, p. 2637, 2024. Disponível em: https://doi.org/10.1038/s41598-024-51985-w. Acesso em: 09 out. 2024.

APRAHAMIAN, I.; MARTINELLI, J.; YASSUDA, M. Doença de Alzheimer: revisão da epidemiologia e diagnóstico. Rev Bras Clin Med, v. 7, p. 27–35, 2009. Disponível em: https://docs.bvsalud.org/upload/S/1679-1010/2009/v7n1/a27-35.pdf. Acesso em: 08 dez. 2025.

ARYA, A. D.; SINGH VERMA, S.; CHAKARABARTI, P.; BISHNOI, R. Prediction of Alzheimer's disease: A Machine Learning Perspective with Ensemble Learning. In: International Conference On Contemporary Computing And Informatics (IC3I), 6., 2023, Gautam Buddha Nagar, India. Anais [...]. Gautam Buddha Nagar: IEEE, 2023. p. 2308-2313. DOI: 10.1109/IC3I59117.2023.10397683.

DARA, O. A.; LOPEZ-GUEDE, J. M.; RAHEEM, H. I.; RAHEBI, J.; ZULUETA, E.; FERNANDEZ-GAMIZ, U. Alzheimer’s Disease diagnosis using machine learning: a survey. Applied Sciences, v. 13, 8298, 18 jul. 2023. Disponível em: https://doi.org/10.3390/app13148298. Acesso em: 23 set. 2024.

ESTEVA, Andre et al. A guide to deep learning in healthcare. Nature Medicine, [s. l.], v. 25, ed. 1, p. 24-29, 2019. Disponível em: https://doi.org/10.1038/s41591-018-0316-z. Acesso em: 6 dez. 2025.

GÉRON, A. Mãos à Obra: Aprendizado de Máquina com Scikit-Learn, Keras e TensorFlow. 2. ed. atual. Rio de Janeiro: Alta Books, 2021. 614 p. ISBN 9788550815480.

GÓMEZ-ZARAGOZÁ, L.; WILLS, S.; TEJEDOR-GARCIA, C.; MARÍN-MORALES, J.; ALCAÑIZ, M.; STRIK, H. Alzheimer Disease Classification through ASR-based Transcriptions: Exploring the Impact of Punctuation and Pauses. Interspeech, Ireland, p. 2403-2407, 20 ago. 2023. Disponível em: https://arxiv.org/abs/2306.03443. Acesso em: 23 set. 2024.

JIANG, Fei et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol, [s. l.], v. 2, ed. 4, p. 230-243, 2017. Disponível em: https://doi.org/10.1136/svn-2017-000101. Acesso em: 6 dez. 2025.

LIVINGSTON, Gill et al. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. The Lancet, [s. l.], v. 404, n. 10452, p. 572-628, 10 ago. 2024. Disponível em: https://doi.org/10.1016/S0140-6736(24)01296-0. Acesso em: 28 dez. 2025.

ORGANIZAÇÃO MUNDIAL DA SAÚDE (OMS). Global action plan on the public health response to dementia 2017 - 2025. Geneva: World Health Organization, 2017. 44 p. ISBN 978-92-4-151348-7. Disponível em: https://tinyurl.com/5fdh9vzz. Acesso em: 28 dez. 2025.

RAO, K. N.; GANDHI, B. R.; RAO, M. V.; JAVVADI, S.; VELLELA, S. S.; KHADER BASHA, S. Prediction and classification of Alzheimer’s disease using machine learning techniques in 3D MR images. In: International Conference On Sustainable Computing And Smart Systems (ICSCSS), 2023, Coimbatore, Índia. Anais […]. Coimbatore: IEEE, 2023. p. 85–90. DOI: 10.1109/ICSCSS57650.2023.10169550.

RICHARDS, Mark; FORD, Neal. Fundamentos da Arquitetura de Software: Uma abordagem de engenharia. Rio de Janeiro: Alta Books, 2024. 416 p. ISBN 9788550819853.

RUSSELL, Stuart J.; NORVIG, Peter. Inteligência Artificial: Uma Abordagem Moderna. 4. ed. Rio de Janeiro: GEN LTC, 2022. E-book. ISBN 9788595159495. Disponível em: https://app.minhabiblioteca.com.br/reader/books/9788595159495/. Acesso em: 06 dez. 2025.

SCHELTENS, Philip et al. Alzheimer‘s disease. The Lancet, [s. l.], v. 397, n. 10284, p. 1577-1590, 24 abr. 2021. Disponível em: https://doi.org/10.1016/S0140-6736(20)32205-4. Acesso em: 4 jan. 2026.

SCHILLING, L. P. et al. Diagnóstico da doença de Alzheimer: recomendações do Departamento Científico de Neurologia Cognitiva e do Envelhecimento da Academia Brasileira de Neurologia. Dementia & Neuropsychologia, v. 16, p. 25–39, 28 nov. 2022. Disponível em: https://www.scielo.br/j/dn/a/DYTTzwYjKYZV6KWKpBqyfXH/?lang=pt. Acesso em: 08 dez. 2025.

SERENIKI, A.; VITAL, M. A. B. F. A doença de Alzheimer: aspectos fisiopatológicos e farmacológicos. Revista de Psiquiatria do Rio Grande do Sul, v. 30, n. 1, 2008. Disponível em: https://www.scielo.br/j/rprs/a/LNQzKPVKxLSsjbTnBCps4XM/?format=html&lang=pt. Acesso em: 08 dez. 2025.

SHORTLIFFE, E. H.; CIMINO, J. J. (Org.). Biomedical Informatics: Computer Applications in Health Care and Biomedicine. 4. ed. Londres: Springer, 2014.

SICSÚ, Abraham L.; SAMARTINI, André; BARTH, Nelson L. Técnicas de machine learning. São Paulo: Editora Blucher, 2023. E-book. ISBN 9786555063974. Disponível em: https://app.minhabiblioteca.com.br/reader/books/9786555063974/. Acesso em: 26 out. 2025.

SILBERSCHATZ, Abraham. Sistema de Banco de Dados. 7. ed. Rio de Janeiro: GEN LTC, 2020. E-book. ISBN 9788595157552. Disponível em: https://app.minhabiblioteca.com.br/reader/books/9788595157552/. Acesso em: 23 out. 2025.

SILVA, M. R. et al. DOENÇA DE ALZHEIMER: ESTRATÉGIAS DE CUIDADO DIANTE DAS DIFICULDADES AO PORTADOR E CUIDADOR. Brazilian Journal of Implantology and Health Sciences, v. 5, n. 4, p. 164–191, 1 ago. 2023. Disponível em: https://bjihs.emnuvens.com.br/bjihs/article/view/380/461. Acesso em: 08 dez. 2025.

Published

20/02/2026

How to Cite

de Lucena, L. M. B. ., Silva, L. F. da C. ., Gonçalves, S. M. N. ., & Silva, V. M. L. (2026). ALZCHECK: INTELLIGENT SYSTEM TO SUPPORT THE EARLY DIAGNOSIS OF ALZHEIMER’S DISEASE. RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 7(2), e727312. https://doi.org/10.47820/recima21.v7i2.7312