APRENDIZADO DE MÁQUINA NA MEDICINA: COMO ALGORITMOS DE APRENDIZADO DE MÁQUINA PODEM SER APLICADOS EM DIAGNÓSTICOS MÉDICOS, PROGNÓSTICOS E DESCOBERTA DE NOVOS TRATAMENTOS

Autores

DOI:

https://doi.org/10.47820/recima21.v4i12.4708

Palavras-chave:

Aprendizado de Máquina, Medicina, Prognóstico, Diagnóstico Médico, Descoberta de Tratamentos

Resumo

A aplicação de algoritmos de aprendizado de máquina na medicina representa uma revolução significativa no diagnóstico, prognóstico e descoberta de tratamentos médicos. Este resumo explora como esses algoritmos têm sido utilizados para melhorar a prática médica e promover avanços na área da saúde. O objetivo deste foi destacar a importância e as aplicações dos algoritmos de aprendizado de máquina na medicina, bem como resumir seus benefícios e desafios. A metodologia deste resumo envolveu uma revisão da literatura médica e científica, com foco nas principais pesquisas e tendências relacionadas ao uso de aprendizado de máquina na medicina. Foram analisados artigos e estudos que abordaram diagnósticos médicos, prognósticos e descoberta de tratamentos. O uso de algoritmos de aprendizado de máquina na medicina tem revolucionado a prática clínica, permitindo diagnósticos mais precisos, prognósticos personalizados e acelerado a descoberta de novos tratamentos. No entanto, desafios éticos, de privacidade e interpretação de dados continuam sendo importantes considerações. É fundamental que a comunidade médica e científica continue a explorar e aproveitar essa tecnologia de forma ética e responsável para melhorar a saúde global.

Downloads

Não há dados estatísticos.

Biografia do Autor

Newdon Ataíde Garzon

Acadêmico do Curso de Bacharelado em Ciência da Computação na Universidade do Estado do Amazonas.

Luiz Sergio de Oliveira Barbosa

Mestre em Tecnologias Emergentes em Educação pela MUST University, Flórida, USA. Professor na Universidade do Estado do Amazonas (UEA). 

Referências

ARAÚJO-FILHO et al. Inteligência Artificial e Imagem Cardíaca. Arq Bras Cardiol: Imagem cardiovasc., v. 2, n. 3, p. 154-156, 2019.

BRAGA, A. V.; LINS, A. F.; SOARES, L. S.; FLEURY, L. G.; CARVALHO, J. C.; PRADO, R. S. Machine learning: O Uso da Inteligência Artificial na Medicina. Brazilian Journal of Development, Curitiba, v. 5, n. 9, p. 16407-16413, sep. 2019.

FREIRE, A. K. D. S.; ALVES, N. C. C.; SANTIAGO, E. J. P.; TAVARES, A. S.; TEIXEIRA, D. D. S.; CARVALHO, I. A. et al. Panorama no Brasil das doenças cardiovasculares dos últimos quatorze anos na perspectiva da promoção à saúde. Revista Saúde e Desenvolvimento, v. 11, n. 9, p. 21-44, 2017.

GALVÃO, M. C. B.; RICARTE, I. L. M. Revisão sistemática da literatura: conceituação, produção e publicação. LOGEION: Filosofia da informação, Rio de Janeiro, v. 6 n. 1, p.57-73, set. 2019 / fev. 2020.

JUMPER, J. et al. Highly accurate protein structure prediction with Alpha Fold. Science. 15 jul. 2021.

LIMA, M. Perspectivismo maquínico à luz dos ecossistemas comunicacionais. Revista Eletrônica Mutações, v. 9, n. 16, abr. 2018.

MESQUITA, C. T. Inteligência Artificial e Machine Learning em Cardiologia – Uma Mudança de Paradigma. International Journal of Cardiovascular Sciences, v. 30, n. 3, p. 187-188, 2017.

NETO, C. Inteligência artificial e novas tecnologias em saúde: desafios e perspectivas. Brazilian Journal of Development, v. 6, n. 2, 2020.

NUNES, Vitor de Sá Tópicos em visão computacional: uma revisão sistemática com aplicações em economia 4.0. [S. l.: s. n.], 2023.

RIBEIRO, A. H. et al. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nature Communications, 9 abr. 2020.

SANT’ANNA, R. M.; CAMACHO, A. C. L. F.; SOUZA, V. M. F.; MENEZES, H. F.; SILVA, R. P. Tecnologias educacionais no cuidado à pacientes com doenças cardiovasculares. Rev Recien., v. 12, n. 37, p. 163-175, 2022.

SANTOS, M. T. et al. Clinical decision support analysis of a microRNA-based thyroid molecular classifier: A real-world, prospective and multicentre validation study. The Lancet Discovery Science (eBioMedicine). 30 jun. 2022.

SENGUPTA, P. P. et al. Cognitive Machine-Learning Algorithm for Cardiac Imaging. Cardiovascular Imaging, v. 9, jun. 2016.

SOUZA FILHO, E. M. de; FERNANDES, F. de A.; SOARES, C. L. de A; SEIXAS, F. L.; SANTOS, A. A. S. M. D. dos; GISMONDI, R. A.; MESQUITA, E. T.; MESQUITA, C. T. Inteligência Artificial em Cardiologia: Conceitos, Ferramentas e Desafios – “Quem Corre é o Cavalo, Você Precisa ser o Jóquei”. Arq Bras Cardiol., v. 114, n. 4, p. 718-725, 2020.

ZERON, R. M. C.; SERRANO JÚNIOR, C. V. Artificial intelligence in the diagnosis of cardiovascular disease. Rev Assoc Med Bras, v. 65, n. 12, p. 1438-1441, 2019.

ZHOU, L.; PAN, S.; WANG, J.; VASILAKOS, A. V. Machine Learning on Big Data: Opportunities and Challenges. Neurocomputing, v. 237, p. 350-61, 2017.

Downloads

Publicado

20/12/2023

Como Citar

Garzon, N. A., & Barbosa, L. S. de O. (2023). APRENDIZADO DE MÁQUINA NA MEDICINA: COMO ALGORITMOS DE APRENDIZADO DE MÁQUINA PODEM SER APLICADOS EM DIAGNÓSTICOS MÉDICOS, PROGNÓSTICOS E DESCOBERTA DE NOVOS TRATAMENTOS. RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 4(12), e4124708. https://doi.org/10.47820/recima21.v4i12.4708