REVISÃO SISTEMÁTICA COMPARATIVA DE CICLOS COMBINADOS DE GERAÇÃO DE ENERGIA BASEADOS EM GASEIFICAÇÃO DE BIOMASSA E GÁS NATURAL/BIOMASSA
DOI:
https://doi.org/10.47820/recima21.v5i2.4874Palavras-chave:
Gaseificação, Ciclo Combinado, ´Gás Natural, Biomassa, Energia RenovávelResumo
Nos últimos anos, a necessidade e busca global por alternativas aos combustíveis fósseis e o desenvolvimento da utilização de biocombustíveis tornou-se crucial. Dentro das fontes renováveis disponíveis, a biomassa se destaca pela sua abundância e baixo custo. Este estudo apresenta uma revisão sistemática da literatura sobre os ciclos combinados de geração de energia, explorando tanto a ciclos movidos somente a gaseificação de biomassa quanto os ciclos combinados convencionais a gás natural, integrados com sistemas de gaseificação. Uma metodologia específica foi empregada, utilizando o software Start para abranger uma ampla gama de artigos disponíveis nas plataformas de busca. Os principais insights desses artigos foram sintetizados para destacar as recentes contribuições a respeito do tema, visando facilitar o acesso às informações e fomentar o desenvolvimento de futuras pesquisas nesse campo.
Downloads
Referências
ASGARI, N.; KHOSHBAKHTI SARAY, R.; MIRMASOUMI, S. Energy and exergy analyses of a novel seasonal CCHP system driven by a gas turbine integrated with a biomass gasification unit and a LiBr-water absorption chiller. Energy Conversion and Management, [S. l.], v. 220, n. January, p. 113096, 2020. DOI: 10.1016/j.enconman.2020.113096. Disponível em: https://doi.org/10.1016/j.enconman.2020.113096. DOI: https://doi.org/10.1016/j.enconman.2020.113096
BACCIOLI, A.; ANTONELLI, M.; DESIDERI, U.; GROSSI, A. Thermodynamic and economic analysis of the integration of Organic Rankine Cycle and Multi-Effect Distillation in waste-heat recovery applications. Energy, [S. l.], v. 161, p. 456–469, 2018. DOI: 10.1016/j.energy.2018.07.150. Disponível em: https://doi.org/10.1016/j.energy.2018.07.150. DOI: https://doi.org/10.1016/j.energy.2018.07.150
BAI, Li; ASADOLLAHZADEH, Muhammad; CHAUHAN, Bhupendra Singh; ABDRABBOH, Mostafa; FAYED, Mohamed; AYED, Hamdi; MOULDI, Abir; MAREFATI, Mohammad. A new biomass-natural gas dual fuel hybrid cooling and power process integrated with waste heat recovery process: Exergoenvironmental and exergoeconomic assessments. Process Safety and Environmental Protection, [S. l.], v. 176, n. February, p. 867–888, 2023. DOI: 10.1016/j.psep.2023.06.037. Disponível em: https://doi.org/10.1016/j.psep.2023.06.037. DOI: https://doi.org/10.1016/j.psep.2023.06.037
BEHESHTI, S. M.; GHASSEMI, H.; SHAHSAVAN-MARKADEH, R. Process simulation of biomass gasification in a bubbling fluidized bed reactor. Energy Conversion and Management, [S. l.], v. 94, p. 345–352, 2015. DOI: 10.1016/j.enconman.2015.01.060. Disponível em: http://dx.doi.org/10.1016/j.enconman.2015.01.060. DOI: https://doi.org/10.1016/j.enconman.2015.01.060
CAO, Yan; DHAHAD, Hayder A.; HUSSEN, Hasanen M.; ATTIA, El Awady; RASHIDI, Shima; SHAMSELDIN, Mohamed A.; FAHAD ALMOJIL, Sattam; IBRAHIM ALMOHANA, Abdulaziz; FAHMI ALALI, Abdulrhman. Techno-economic investigation and multi-criteria optimization of a novel combined cycle based on biomass gasifier, S-CO2 cycle, and liquefied natural gas for cold exergy usage. Sustainable Energy Technologies and Assessments, [S. l.], v. 52, n. PB, p. 102187, 2022. DOI: 10.1016/j.seta.2022.102187. Disponível em: https://doi.org/10.1016/j.seta.2022.102187. DOI: https://doi.org/10.1016/j.seta.2022.102187
CAO, Yan; DHAHAD, Hayder A.; TOGUN, Hussein; ANQI, Ali E.; FAROUK, Naeim; FARHANG, Babak. Proposal and thermo-economic optimization of using LNG cold exergy for compressor inlet cooling in an integrated biomass fueled triple combined power cycle. International Journal of Hydrogen Energy, [S. l.], v. 46, n. 29, p. 15351–15366, 2021. DOI: 10.1016/j.ijhydene.2021.02.111. Disponível em: https://doi.org/10.1016/j.ijhydene.2021.02.111. DOI: https://doi.org/10.1016/j.ijhydene.2021.02.111
CAO, Yihuai; WANG, Jiangjiang; LI, Yiming; FU, Wenfeng; LIU, Boxiang. Thermodynamic analysis of biomass and liquefied natural gas complementary CCHP system with liquid air energy storage. Energy Conversion and Management, [S. l.], v. 283, n. February, p. 116925, 2023. DOI: 10.1016/j.enconman.2023.116925. Disponível em: https://doi.org/10.1016/j.enconman.2023.116925. DOI: https://doi.org/10.1016/j.enconman.2023.116925
CARRIVEAU, Rupp; EBRAHIMI, Mehdi; TING, David S. K.; MCGILLIS, Andrew. Transient thermodynamic modeling of an underwater compressed air energy storage plant: Conventional versus advanced exergy analysis. Sustainable Energy Technologies and Assessments, [S. l.], v. 31, n. December 2018, p. 146–154, 2019. DOI: 10.1016/j.seta.2018.12.003. Disponível em: https://doi.org/10.1016/j.seta.2018.12.003. DOI: https://doi.org/10.1016/j.seta.2018.12.003
CHANG, Le; WU, Zhixin; GHADIMI, Noradin. A new biomass-based hybrid energy system integrated with a flue gas condensation process and energy storage option: An effort to mitigate environmental hazards. Process Safety and Environmental Protection, [S. l.], v. 177, n. June, p. 959–975, 2023. DOI: 10.1016/j.psep.2023.07.045. Disponível em: https://doi.org/10.1016/j.psep.2023.07.045. DOI: https://doi.org/10.1016/j.psep.2023.07.045
CHEN, Heng; LU, Di; AN, Jizhen; QIAO, Shichao; DONG, Yuehong; JIANG, Xue; XU, Gang; LIU, Tong. Thermo-Economic analysis of a novel biomass Gasification-Based power system integrated with a supercritical CO2 cycle and a Coal-Fired power plant. Energy Conversion and Management, [S. l.], v. 266, n. June, p. 1–18, 2022. DOI: 10.1016/j.enconman.2022.115860. DOI: https://doi.org/10.1016/j.enconman.2022.115860
CONFORTO, Edivandro Carlos; AMARAL, Daniel Capaldo; SILVA, Sérgio Luis Da. Roteiro para revisão bibliográfica sistemática : aplicação no desenvolvimento de produtos e gerenciamento de projetos. In: 8° Congresso Brasileiro de Gestão de Desenvolviemnto de Produto - CNGDP 2011, [S. l.], n. 1998, p. 1–12, 2011. Disponível em: http://www.ufrgs.br/cbgdp2011/downloads/9149.pdf.
EBRAHIMI, Armin; ZIABASHARHAGH, Masoud. Energy and exergy analyses of a novel integrated process configuration for tri-generation heat, power and liquefied natural gas based on biomass gasification. Energy Conversion and Management, [S. l.], v. 209, n. February, p. 112624, 2020. DOI: 10.1016/j.enconman.2020.112624. Disponível em: https://doi.org/10.1016/j.enconman.2020.112624. DOI: https://doi.org/10.1016/j.enconman.2020.112624
FABBRI, Sandra; SILVA, Cleiton; HERNANDES, Elis; OCTAVIANO, Fábio; DI THOMMAZO, André; BELGAMO, Anderson. Improvements in the StArt tool to better support the systematic review process. ACM International Conference Proceeding Series, [S. l.], v. 01-03-June, 2016. DOI: 10.1145/2915970.2916013. DOI: https://doi.org/10.1145/2915970.2916013
GE, Huijun; ZHANG, Haifeng; GUO, Wanjun; SONG, Tao; SHEN, Laihong. System simulation and experimental verification: Biomass-based integrated gasification combined cycle (BIGCC) coupling with chemical looping gasification (CLG) for power generation. Fuel, [S. l.], v. 241, n. August 2018, p. 118–128, 2019. DOI: 10.1016/j.fuel.2018.11.091. Disponível em: https://doi.org/10.1016/j.fuel.2018.11.091. DOI: https://doi.org/10.1016/j.fuel.2018.11.091
GHIAMI, Shamsoddin; KHALLAGHI, Navid; BORHANI, Tohid N. Techno-economic and environmental assessment of staged oxy-co-firing of biomass-derived syngas and natural gas. Energy Conversion and Management, [S. l.], v. 243, n. June, p. 114410, 2021. DOI: 10.1016/j.enconman.2021.114410. Disponível em: https://doi.org/10.1016/j.enconman.2021.114410. DOI: https://doi.org/10.1016/j.enconman.2021.114410
GHIAT, Ikhlas; ALNOUSS, Ahmed; MCKAY, Gordon; AL-ANSARI, Tareq. Biomass-based integrated gasification combined cycle with post-combustion CO2 recovery by potassium carbonate: Techno-economic and environmental analysis. Computers and Chemical Engineering, [S. l.], v. 135, p. 106758, 2020. DOI: 10.1016/j.compchemeng.2020.106758. Disponível em: https://doi.org/10.1016/j.compchemeng.2020.106758. DOI: https://doi.org/10.1016/j.compchemeng.2020.106758
HAI, Tao; ALSHAHRI, Abdullah H.; MOHAMMED, Amin Salih; SHARMA, Aman; ALMUJIBAH, Hamad R.; MOHAMMED METWALLY, Ahmed Sayed; ULLAH, Mirzat. Performance assessment and multiobjective optimization of a biomass waste-fired gasification combined cycle for emission reduction. Chemosphere, [S. l.], v. 334, n. May, p. 138980, 2023. DOI: 10.1016/j.chemosphere.2023.138980. Disponível em: https://doi.org/10.1016/j.chemosphere.2023.138980. DOI: https://doi.org/10.1016/j.chemosphere.2023.138980
HAI, Tao; DHAHAD, Hayder A.; ZHOU, Jincheng; ATTIA, El Awady; KH, Teeba Ismail; SHAMSELDIN, Mohamed A.; ALMOJIL, Sattam Fahad; ALMOHANA, Abdulaziz Ibrahim; ALALI, Abdulrhman Fahmi. The novel integration of biomass gasification plant to generate efficient power, and the waste recovery to generate cooling and freshwater: A demonstration of 4E analysis and multi-criteria optimization. Sustainable Energy Technologies and Assessments, [S. l.], v. 53, n. PC, p. 102588, 2022. DOI: 10.1016/j.seta.2022.102588. Disponível em:
https://doi.org/10.1016/j.seta.2022.102588. DOI: https://doi.org/10.1016/j.seta.2022.102588
HAMRANG, Farzad; SHOKRI, Afshar; SEYED MAHMOUDI, S. M.; EHGHAGHI, Biuk; ROSEN, Marc A. Performance analysis of a new electricity and freshwater production system based on an integrated gasification combined cycle and multi-effect desalination. Sustainability (Switzerland), [S. l.], v. 12, n. 19, p. 1–29, 2020. DOI: 10.3390/su12197996. DOI: https://doi.org/10.3390/su12197996
KARTAL, Furkan; ÖZVEREN, Uğur. Energy and exergy analysis of entrained bed gasifier/GT/Kalina cycle model for CO2 co-gasification of waste tyre and biochar. Fuel, [S. l.], v. 331, n. September 2022, 2023. DOI: 10.1016/j.fuel.2022.125943. DOI: https://doi.org/10.1016/j.fuel.2022.125943
LASHGARI, Fatemeh; BABAEI, Seyed Mostafa; PEDRAM, Mona Zamani; ARABKOOHSAR, Ahmad. Comprehensive analysis of a novel integration of a biomass-driven combined heat and power plant with a compressed air energy storage (CAES). Energy Conversion and Management, [S. l.], v. 255, n. January, p. 115333, 2022. DOI: 10.1016/j.enconman.2022.115333. Disponível em: https://doi.org/10.1016/j.enconman.2022.115333. DOI: https://doi.org/10.1016/j.enconman.2022.115333
LI, Xuhao; ZHONG, Kunyu; FENG, Li. Machine learning-based metaheuristic optimization of an integrated biomass gasification cycle for fuel and cooling production. Fuel, [S. l.], v. 332, n. P1, p. 125969, 2023. DOI: 10.1016/j.fuel.2022.125969. Disponível em: https://doi.org/10.1016/j.fuel.2022.125969. DOI: https://doi.org/10.1016/j.fuel.2022.125969
MOHAMED, Usama; ZHAO, Ying jie; YI, Qun; SHI, Li juan; WEI, Guo qing; NIMMO, William. Evaluation of life cycle energy, economy and CO2 emissions for biomass chemical looping gasification topower generation. Renewable Energy, [S. l.], v. 176, p. 366–387, 2021. DOI: 10.1016/j.renene.2021.05.067. Disponível em: https://doi.org/10.1016/j.renene.2021.05.067. DOI: https://doi.org/10.1016/j.renene.2021.05.067
MOHARAMIAN, Anahita; SOLTANI, Saeed; ROSEN, Marc A.; MAHMOUDI, S. M. S. Advanced exergy and advanced exergoeconomic analyses of biomass and natural gas fired combined cycles with hydrogen production. Applied Thermal Engineering, [S. l.], v. 134, n. September 2017, p. 1–11, 2018. a. DOI: 10.1016/j.applthermaleng.2018.01.103. Disponível em: https://doi.org/10.1016/j.applthermaleng.2018.01.103. DOI: https://doi.org/10.1016/j.applthermaleng.2018.01.103
MOHARAMIAN, Anahita; SOLTANI, Saeed; ROSEN, Marc A.; MAHMOUDI, S. M. S.; MOROSUK, Tatiana. Exergoeconomic analysis of natural gas fired and biomass post-fired combined cycle with hydrogen injection into the combustion chamber. Journal of Cleaner Production, [S. l.], v. 180, p. 450–465, 2018. b. DOI: 10.1016/j.jclepro.2018.01.156. Disponível em: https://doi.org/10.1016/j.jclepro.2018.01.156. DOI: https://doi.org/10.1016/j.jclepro.2018.01.156
MORRONE, Pietropaolo; AMELIO, Mario; ALGIERI, Angelo; PERRONE, Diego. Hybrid biomass and natural gas combined cycles: Energy analysis and comparison between different plant configurations. Energy Conversion and Management, [S. l.], v. 267, n. June, p. 115874, 2022. DOI: 10.1016/j.enconman.2022.115874. Disponível em: https://doi.org/10.1016/j.enconman.2022.115874. DOI: https://doi.org/10.1016/j.enconman.2022.115874
MUSHARAVATI, Farayi; KHOSHNEVISAN, Alireza; ALIRAHMI, Seyed Mojtaba; AHMADI, Pouria; KHANMOHAMMADI, Shoaib. Multi-objective optimization of a biomass gasification to generate electricity and desalinated water using Grey Wolf Optimizer and artificial neural network. Chemosphere, [S. l.], v. 287, n. P2, p. 131980, 2022. DOI: 10.1016/j.chemosphere.2021.131980. Disponível em: https://doi.org/10.1016/j.chemosphere.2021.131980. DOI: https://doi.org/10.1016/j.chemosphere.2021.131980
NIU, Miaomiao; XIE, Jun; LIANG, Shaohua; LIU, Liheng; WANG, Liang; PENG, Yu. Simulation of a new biomass integrated gasification combined cycle (BIGCC) power generation system using Aspen Plus: Performance analysis and energetic assessment. International Journal of Hydrogen Energy, [S. l.], v. 46, n. 43, p. 22356–22367, 2021. DOI: 10.1016/j.ijhydene.2021.04.076. Disponível em: https://doi.org/10.1016/j.ijhydene.2021.04.076. DOI: https://doi.org/10.1016/j.ijhydene.2021.04.076
PIHL ERIK, E.; HEYNE, Stefan; THUNMAN, Henrik; JOHNSSON, Filip. Highly efficient electricity generation from biomass by integration and hybridization with combined cycle gas turbine (CCGT) plants for natural gas. Energy, [S. l.], v. 35, n. 10, p. 4042–4052, 2010. DOI: 10.1016/j.energy.2010.06.008. Disponível em: http://dx.doi.org/10.1016/j.energy.2010.06.008. DOI: https://doi.org/10.1016/j.energy.2010.06.008
RAZMI, Amir Reza; HEYDARI AFSHAR, Hasan; POURAHMADIYAN, Ali; TORABI, M. Investigation of a combined heat and power (CHP) system based on biomass and compressed air energy storage (CAES). Sustainable Energy Technologies and Assessments, [S. l.], v. 46, n. April, 2021. DOI: 10.1016/j.seta.2021.101253. DOI: https://doi.org/10.1016/j.seta.2021.101253
REN, Jie; QIAN, Zuoqin; FEI, Chunguang; LU, Ding; ZOU, Yincai; XU, Chen; LIU, Lu. Thermodynamic, exergoeconomic, and exergoenvironmental analysis of a combined cooling and power system for natural gas-biomass dual fuel gas turbine waste heat recovery. Energy, [S. l.], v. 269, n. May 2022, p. 126676, 2023. DOI: 10.1016/j.energy.2023.126676. Disponível em: https://doi.org/10.1016/j.energy.2023.126676. DOI: https://doi.org/10.1016/j.energy.2023.126676
REN, Siyue; FENG, Xiao; WANG, Yufei. Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system. Renewable and Sustainable Energy Reviews, [S. l.], v. 147, n. May, p. 111208, 2021. DOI: 10.1016/j.rser.2021.111208. Disponível em: https://doi.org/10.1016/j.rser.2021.111208. DOI: https://doi.org/10.1016/j.rser.2021.111208
SHARAFI LALEH, Shayan; ZEINALI, Mohsen; MAHMOUDI, S. M. S.; SOLTANI, Saeed; ROSEN, Marc A. Biomass co-fired combined cycle with hydrogen production via proton exchange membrane electrolysis and waste heat recovery: Thermodynamic assessment. International Journal of Hydrogen Energy, [S. l.], v. 48, n. 87, p. 33795–33809, 2023. DOI: 10.1016/j.ijhydene.2023.05.137. Disponível em: https://doi.org/10.1016/j.ijhydene.2023.05.137. DOI: https://doi.org/10.1016/j.ijhydene.2023.05.137
SOLTANI, S.; MAHMOUDI, S. M. S.; YARI, M.; ROSEN, M. A. Thermodynamic analyses of an externally fired gas turbine combined cycle integrated with a biomass gasification plant. Energy Conversion and Management, [S. l.], v. 70, p. 107–115, 2013. DOI: 10.1016/j.enconman.2013.03.002. Disponível em: http://dx.doi.org/10.1016/j.enconman.2013.03.002. DOI: https://doi.org/10.1016/j.enconman.2013.03.002
TAN, Liping; CAI, Lei; FU, Yidan; ZHOU, Zining; GUAN, Yanwen. Numerical investigation of biomass and liquefied natural gas driven oxy-fuel combustion power system. Renewable Energy, [S. l.], v. 208, n. February, p. 94–104, 2023. DOI: 10.1016/j.renene.2023.03.014. Disponível em: https://doi.org/10.1016/j.renene.2023.03.014. DOI: https://doi.org/10.1016/j.renene.2023.03.014
TAN, Liping; CAI, Lei; XIANG, Yanlei; GUAN, Yanwen; LIU, Wenbin. Investigation on oxy-fuel biomass integrated gasification combined cycle system with flue gas as gasifying agent. Biomass and Bioenergy, [S. l.], v. 166, n. December 2021, p. 106621, 2022. DOI: 10.1016/j.biombioe.2022.106621. Disponível em: https://doi.org/10.1016/j.biombioe.2022.106621. DOI: https://doi.org/10.1016/j.biombioe.2022.106621
VERA, David; JURADO, Francisco; CARPIO, José; KAMEL, Salah. Biomass gasification coupled to an EFGT-ORC combined system to maximize the electrical energy generation: A case applied to the olive oil industry. Energy, [S. l.], v. 144, p. 41–53, 2018. DOI: 10.1016/j.energy.2017.11.152. DOI: https://doi.org/10.1016/j.energy.2017.11.152
WANG, Hongliang; SU, Zhanguo; ABED, Azher M.; NAG, Kaushik; DEIFALLA, Ahmed; MAREFATI, Mohammad; MAHARIQ, Ibrahim; WEI, Yanming. Multi-criteria evaluation and optimization of a new multigeneration cycle based on solid oxide fuel cell and biomass fuel integrated with a thermoelectric generator, gas turbine, and methanation cycle. Process Safety and Environmental Protection, [S. l.], v. 170, n. December 2022, p. 139–156, 2023. DOI: 10.1016/j.psep.2022.11.087. Disponível em: https://doi.org/10.1016/j.psep.2022.11.087. DOI: https://doi.org/10.1016/j.psep.2022.11.087
WEBSTER, Jane; WATSON, Richard. MIS Quarterly. Analyzing the Past To Prepare for the Future : Writing a Literature Review, [S. l.], v. 26, n. 2, p. 13–23, 2002.
XIANG, Yanlei; CAI, Lei; GUAN, Yanwen; LIU, Wenbin; HE, Tianzhi; LI, Juan. Study on the biomass-based integrated gasification combined cycle with negative CO2 emissions under different temperatures and pressures. Energy, [S. l.], v. 179, p. 571–580, 2019. DOI: 10.1016/j.energy.2019.05.011. Disponível em: https://doi.org/10.1016/j.energy.2019.05.011. DOI: https://doi.org/10.1016/j.energy.2019.05.011
YANG, Kun; ZHU, Neng; WANG, Daquan; CHANG, Chen. Thermoeconomic analysis of co-firing combined cooling, heating, and power system based on energy level. Energy Conversion and Management, [S. l.], v. 197, n. June, p. 111900, 2019. DOI: 10.1016/j.enconman.2019.111900. Disponível em: https://doi.org/10.1016/j.enconman.2019.111900. DOI: https://doi.org/10.1016/j.enconman.2019.111900
ZANG, Guiyan; TEJASVI, Sharma; RATNER, Albert; LORA, Electo Silva. A comparative study of biomass integrated gasification combined cycle power systems: Performance analysis. Bioresource Technology, [S. l.], v. 255, n. January, p. 246–256, 2018. DOI: 10.1016/j.biortech.2018.01.093. Disponível em: https://doi.org/10.1016/j.biortech.2018.01.093. DOI: https://doi.org/10.1016/j.biortech.2018.01.093
ZHANG, Xiaofeng; LIU, Xiaobo; SUN, Xiaoqin; JIANG, Changwei; LI, Hongqiang; SONG, Quanbin; ZENG, Jing; ZHANG, Guoqiang. Thermodynamic and economic assessment of a novel CCHP integrated system taking biomass, natural gas and geothermal energy as co-feeds. Energy Conversion and Management, [S. l.], v. 172, n. May, p. 105–118, 2018. DOI: 10.1016/j.enconman.2018.07.002. Disponível em: https://doi.org/10.1016/j.enconman.2018.07.002. DOI: https://doi.org/10.1016/j.enconman.2018.07.002
ZHANG, Xiaofeng; ZENG, Rong; MU, Kang; LIU, Xiaobo; SUN, Xiaoqin; LI, Hongqiang. Exergetic and exergoeconomic evaluation of co-firing biomass gas with natural gas in CCHP system integrated with ground source heat pump. Energy Conversion and Management, [S. l.], v. 180, n. August 2018, p. 622–640, 2019. DOI: 10.1016/j.enconman.2018.11.009. Disponível em: https://doi.org/10.1016/j.enconman.2018.11.009. DOI: https://doi.org/10.1016/j.enconman.2018.11.009
Downloads
Publicado
Licença
Copyright (c) 2024 RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECIMA21, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECIMA21 apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.