ARTIFICIAL INTELLIGENCE AND ADVANCES IN DIAGNOSTIC IMAGING IN RADIOLOGY

Authors

DOI:

https://doi.org/10.47820/recima21.v2i7.523

Keywords:

Artificial Intelligence, Radiology, Diagnostic Imaging.

Abstract

Introduction: Artificial intelligence (AI) has been emerging as a complement to the growing role of radiology in diagnostic and interventional medicine, reducing stress points for radiology professionals. Objective: To identify in the available literature the main advances that artificial intelligence has been providing in diagnostic imaging in radiology. Methodology: This is a systematic review, whose searches were performed in the virtual libraries MEDLINE via Pubmed and Web of Science, and in the LILACS and CINAHL databases. Cross-reference searches were also performed. For the search, controlled descriptors and the Boolean operators AND, for simultaneous occurrence of subjects, and OR, for occurrence of one or another subject, were adopted. The descriptors used were: "Artificial Intelligence", "Radiology" and "Diagnostic Imaging". To better organize the sample collection, we opted for the use of advanced search. The descriptors were combined with each other with the Boolean connector OR and AND, within each set of terms of the PICo strategy, and then crossed with the Boolean connector. Results: It is highlighted that AI allows the possibility of combining several sources of information, in addition to the image, to obtain a more accurate diagnosis, helping to increase productivity and better management in industry dynamics and accurate diagnosis. Final considerations: It is concluded that the knowledge and practices acquired by professionals of radiological techniques in performing minimally invasive exams and procedures, are a basic and necessary factor for the radiology sector where the AI will become a great ally of health professionals.

Downloads

Download data is not yet available.

Author Biography

Bruno Abilio da Silva Machado

Graduado em Radiologia pelo Centro Universitário Mauricio de Nassau Teresina- UNINASSAU, Pós-graduado
em Docência no Ensino Superior pela Faculdade Elesbão Veloso- FAEVE e MBA em Liderança, Inovação e Gestão
pela Faculdade Venda Nova do Imigrante-FAVENI. Fundador e Presidente na gestão 2019/2020 da Liga
Acadêmica de Radiologia e Diagnóstico por Imagem- LARDI PI na Uninassau Teresina. Registrado na ORCID sob
o nº 0000.0003.1759.0206. Professor Orientador na Gestão 2021-2022 da Liga Acadêmica de Radiologia e
Diagnóstico por Imagem- LARDI PI. Tem experiência acadêmica em áreas como: microbiologia, radioproteção,
radiologia odontológica e metodologia científica. Atualmente desenvolve pesquisas relacionadas aos mesmos
eixos temáticos com ênfase em oncologia e diagnóstico por imagem. Membro do Núcleo de Estudo e Pesquisa
em Ciências Biológicas-NEPEA. Professor de cursos técnicos na área da saúde.

Published

31/07/2021

How to Cite

Machado, B. A. da S. ., Cunha , I. da S. ., Falcão , C. P. M. ., Batista , P. R. S. ., Gomes , D. da S. ., Moura , M. A. de S. ., & Freitas , F. V. da S. . (2021). ARTIFICIAL INTELLIGENCE AND ADVANCES IN DIAGNOSTIC IMAGING IN RADIOLOGY. RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 2(7), e27523. https://doi.org/10.47820/recima21.v2i7.523