VISUAL ANALYSIS OF POPULATION DATA FROM THE STATE OF MATO GROSSO USING LLM

Authors

DOI:

https://doi.org/10.47820/recima21.v6i6.6443

Keywords:

Population Analysis. Data Visualization. Chatgpt. AI. Graphical Analysis. LLM. Census Data.

Abstract

This article presents a visual analysis of population data from Mato Grosso state for censuses from 1980 to 2022, utilizing dialogue techniques via prompts and AI (Artificial Intelligence) to suggest analysis methods and generate processing scripts for population datasets. The central motivation is the possibility of exploring data provided by IBGE (via census), organized by meso and microregions, allowing Python scripts to read and process data in CSV format. Among the results, we can indicate significant growth and decline in certain municipalities. Using prompts to interact with datasets and scripts proved useful for data interpretation.

Downloads

Download data is not yet available.

Author Biographies

  • Emiliano Soares Monteiro

    Professor Doutor na FACET - Faculdade de Ciências Exatas, da Unemat Sinop. 

  • Francisco Sanches Banhos Filho

    Graduação em Ciencia da Computação pela Universidade do Estado de Mato Grosso, Especialização em Administração em Redes Linux pela Universidade Federal de Lavras e Mestrado em Ciência da Computação pela Faculdade Campo Limpo Paulista. Professor assistente da Universidade do Estado de Mato Grosso. UNEMAT.

  • Ivan Luiz Pedroso Pires

    Professor Doutor da FACET - Faculdade de Ciências Exatas, na Unemat Sinop.

     

  • Benevid Felix Silva

    Professor Doutor da FACET - Faculdade de Ciências Exatas, na Unemat Sinop.

     

  • Maria Eloisa Mignoni

    Graduação em Curso Superior de Tecnologia Em Processamento de Dados - Faculdades Integradas Cândido Rondon e mestre em Ciências da Computação pela Universidade Federal de Santa Catarina. Doutora em Computação aplicada pela UNISINOS. Professora assistente da UNEMAT - Campus Nova Mutum. Pró-Reitoria de Ensino de Graduação da UNEMAT, Diretora do Câmpus de Nova Mutum - UNEMAT, Chefe do Departamento de Administração da UNEMAT e coordenadora de curso de Computação do Unirondon, Professora do UNIRONDON. 

     

References

ANESP. Censo 2022: alterações no perfil demográfico impactam políticas públicas. Notícias Anesp, jul. 2023 URL: https://anesp.org.br/todas-as-noticias/censo-2022-alteraes-no-perfil-demogrfico-impactam-polticas-pblicas.

BONDARENKO, O. V.; HANCHUK, O. V.; PAKHOMOVA, O. V.; TSUTSUNASHVILI, G.; ZAGÓRSKI, A. Visualization of demographic statistical data. IOP Conference Series: Earth and Environmental Science, v. 1049, n. 1, p. 012076, 2023. DOI: 10.1088/1755-1315/1049/1/012076. DOI: https://doi.org/10.1088/1755-1315/1049/1/012076

BORGES, G. M. A investigação da saúde nos censos demográficos do brasil: possibilidades de análise, vantagens e limitações. Boletim Informativo de Saúde (BIS), v. 16, n. 2, p. 6–14, 2015. URL: https://docs.bvsalud.org/biblioref/2019/11/1025416/bis-v16n2-a-contribuicao-6-14.pdf DOI: https://doi.org/10.52753/bis.v16i2.35588

CARD, S.; MACKINLAY, J.; SHNEIDERMAN, B. Readings in Information Visualization: Using Vision To Think. [S. l.: s. n.], 1999. ISBN: 978-1-55860-533-6.

CUI, W. Visual analytics: A comprehensive overview. IEEE Access, v. 7, p. 81555–81573, 2019. DOI: 10.1109/ACCESS.2019.2923736. DOI: https://doi.org/10.1109/ACCESS.2019.2923736

DESAI, A. Deciphering human-ai interactions: A data-driven analysis of user prompting behaviors in large language models. ResearchGate Preprint, 2024. Disponível em: https://www.researchgate.net/publication/390587330_Deciphering_HumanAI_Interactions_A_Data-Driven_Analysis_of_User_Prompting_Behaviors_in_Large_Language_Models DOI: https://doi.org/10.36227/techrxiv.174235777.79846807/v1

FISHER, B. Illuminating the Path: An RD Agenda for Visual Analytics. [S. l.: s. n,], 2024. p. 69–104. ISBN: 0769523234.

GEBRU, T.; KRAUSE, J.; WANG, Y.; CHEN, D.; DENG, J.; AIDEN, E. L.; FEI-FEI, L. Using deep learning and google street view to estimate the demographic makeup of the us. arXiv preprint, arXiv:1702.06683, 2017. Disponível em: https://arxiv.org/abs/1702.06683. DOI: https://doi.org/10.1073/pnas.1700035114

IBGE Linha do tempo – síntese da história do Ibge (1936-2016). Brasilia: IBGE, 2017. Disponível em: https://memoria.ibge.gov.br/images/memoria/linha-do-tempo/LinhaDoTempoSemImagem.pdf

IBGE. Censo demográfico. Brasilia: IBGE, 2024ª. Disponível em: https://www.ibge.gov.br/estatisticas/sociais/habitacao/25089censo19916.html?edicao=25090&t=o-que-e

IBGE. Sidra: sistema IBGE de recuperação automática. Brasilia: IBGE, 2024b. Disponível em: https://sidra.ibge.gov.br/home/pnadct/brasil.

JOSYULA, H.; PATEL, K.; BHANUSHALI, A.; SUNIL, Landge, R.; MITTAL, S. A review on data visualization for exploratory data analysis. ResearchGate, v. 38, p. 487–494, 2023. DOI: 10.5281/zenodo.777730.

LIU, P.; YUAN, W.; FU, J.; JIANG, Z.; HAYASHI, H.; NEUBIG, G. Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing. ACM Comput. Surv., v. 55, n. 9, ResearchGate. DOI: 10.1145/3560815. DOI: https://doi.org/10.1145/3560815

MESKÓ, B. Prompt engineering as an important emerging skill for medical professionals: Tutorial. J Med Internet Res, v. 25, p. e50638, 2023. DOI: 10.2196/50638. DOI: https://doi.org/10.2196/50638

MIDWAY, S. R. Principles of effective data visualization. Patterns, v. 1, n. 9, p. 100141, 2020. DOI: https://doi.org/10.1016/j.patter.2020.100141. DOI: https://doi.org/10.1016/j.patter.2020.100141

MONTGOMERY, R. M. Population dynamics: Conceptual foundations, mathematical models and applications. 2025. DOI: 10.13140/RG.2.2.28694.66889.

NOY, N.; BENJELLOUN, O. Prompting datasets: Data discovery with conversational agents. arXiv preprint, arXiv:2312.09947, 2023. DOI: https://arxiv.org/html/2312.09947v1.

OJIMA, R. Censo 2022: alterações no perfil demográfico impactam políticas públicas. Technical report, nov. 2017. Disponível em: https://anesp.org.br/todas-as-noticias/censo-2022-alteraes-no-perfil-demogrfico-impactam-polticas-pblicas.

OLIVEIRA, L. A. P.; SIMÕES, C. C. S. O IBGE e as pesquisas populacionais. Revista Brasileira de Estudos de População, v. 22, n. 2, p. 291–302, 2005. DOI: 10.1590/S0102-30982005000200007. DOI: https://doi.org/10.1590/S0102-30982005000200007

OPPENLAENDER, J.; LINDER, R.; SILVENNOINENC, J. S. Prompting ai art: An investigation into the creative skill of prompt engineering. International Journal of Human–Computer Interaction, p. 1–23, 2024. DOI: 10.1080/10447318.2024.2431761. DOI: https://doi.org/10.1080/10447318.2024.2431761

OUYANG, W. Data visualization in big data analysis: Applications and future trends. J. Comput. Commun., v. 12, n. 11, p. 76–85, 2024. DOI: 10.4236/jcc.2024.1211005. DOI: https://doi.org/10.4236/jcc.2024.1211005

PETERSON, E. W. F. The role of population in economic growth. SAGE Open, v. 7, n. 4, p. 2158244017736094, 2017. DOI: 10.1177/2158244017736094. DOI: https://doi.org/10.1177/2158244017736094

PRADO, K. S. do. Repositório: Municípios brasileiros. [S. l.: s. n.], 2024. https://github.com/kelvins/municipios-brasileiros. Acesso em: abr. 2025.

QUINN, T. Population Dynamics. [S. l.: s. n.], 2013. DOI: 10.1002/9780470057339.vap028.pub2. DOI: https://doi.org/10.1002/9780470057339.vap028.pub2

REYNOLDS, L.; Mcdonell, K. Prompt programming for large language models: Beyond the few-shot paradigm. In: Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, CHI EA ’21, New York, NY, USA. Association for Computing Machinery, 2021. DOI: 10.1145/3411763.3451760. DOI: https://doi.org/10.1145/3411763.3451760

RIFFE, T.; KLUESENER, S.; SANDER, N. Editorial to the Special Issue on Demographic Data Visualization: Getting the point across – Reaching the potential of demographic data visualization. Demographic Research, S29, n. 36, p. 865–878, 2021a. DOI: 10.4054/DemRes.2021.44.36 DOI: https://doi.org/10.4054/DemRes.2021.44.36

RIFFE, T.; SANDER, N.; KLÜSENER, S. Getting the point across – reaching the potential of demographic data visualization. Demographic Research, v. 44, n. 36, p. 843–864, 2021b. Disponível em: https://www.demographic-research.org/volumes/vol44/36/44-36.pdf

SHIN, T.; RAZEGHI, Y.; LOGAN IV, R. L.; WALLACE, E.; SINGH, S. AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts. In: WEBBER, B.; COHN, T.; HE, Y.; LIU, Y. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). [S. l.]: Association for Computational Linguistics, p. 4222–4235, 2020. DOI: 10.18653/v1/2020.emnlp-main.346. DOI: https://doi.org/10.18653/v1/2020.emnlp-main.346

SIBLY, R.; HONE, J. Population growth rate and its determinants: An overview. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, v. 357, p. 1153–70, 2002. DOI: 10.1098/rstb.2002.1117. DOI: https://doi.org/10.1098/rstb.2002.1117

U.S. CENSUS BUREAU. Communicating with census data: Data visualization. U.S.: Department of Commerce, 2017. Disponível em: https://www.census.gov/content/dam/Census/library/working-papers/2017/demo/communicating-with-census-data-data-visualization.pdf

UNWIN, A. Why Is Data Visualization Important? What Is Important in Data Visualization? Harvard Data Science Review, v. 2, n. 1, 2020. https://hdsr.mitpress.mit.edu/pub/zok97i7p. DOI: https://doi.org/10.1162/99608f92.8ae4d525

WHITE, E. R. Minimum time required to detect population trends: The need for long-term monitoring programs. BioScience, v. 69, n. 1, p. 40–46, 2018. DOI: 10.1093/biosci/biy144. DOI: https://doi.org/10.1093/biosci/biy144

XU, A.; LIU, Z.; GUO, Y.; SINHA, V.; AKKIRAJU, R. A new chatbot for customer service on social media. In: Proceedings of the 2017 CHI Conference on Human Factors. New York, NY, USA. Association for Computing Machinery, 2017. p. 3506–3510. DOI: https://doi.org/10.1145/3025453.3025496

Published

31/05/2025

How to Cite

VISUAL ANALYSIS OF POPULATION DATA FROM THE STATE OF MATO GROSSO USING LLM. (2025). RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 6(6), e666443. https://doi.org/10.47820/recima21.v6i6.6443