COLLABORATIVE ROBOTICS: THE USE OF ROBOTS IN PRODUCTION PROCESSES

Authors

  • Fabiano Santoni Uniara – Universidade de Araraquara
  • André Vicente Ricco Lucato

DOI:

https://doi.org/10.47820/recima21.v1i1.914

Keywords:

Competitiveness. Work environment. Production Processes. Collaborative Robotics. Safety and Prevention.

Abstract

Collaborative robots are machines that allow automation of productive activities. Its main purpose is to share the work area with man, requiring low technical expertise and less training load to the operator, combined with preventive and safety aspects in order to avoid any kind of accident as much as possible. The system by which these robots are developed, allows the stop or gradual reduction of speed of the machine after detecting an obstacle in its route at a certain distance, thus preventing a possible collision with the user. Cobots, as collaborative robots are known, are also characterized by being flexible and simple in their handling, allowing a teach-in system (learning mode) through manual indications associated with additional steering and functionality. The present study is mainly justified by the fact that collaborative robots offer several benefits in activities considered exhaustive and repetitive, also offering safety and agility in environments that may offer risks to the health of individuals, focusing on increasing quality and efficiency in production processes. Collaborative robots as work tools can add competitive advantages to organizations that choose to use them. The general objective of this study was to raise the characteristics of collaborative robotics and the advantages provided in its adoption in the production process. This research is based on a literature review to achieve the results and conclusions of the proposed objective.

Downloads

Download data is not yet available.

References

BATCHELOR, B. G. Machine Vision for industrial applications. In: Machine Vision Handbook, p. 1-59. London: Springer-Verlag, 2012. Acesso em: 06 set. 2021.

BOOK, W.; WINCK, R.; KILLPACK, M.; HUGGINS, J.; DICKERSON, S.; JAYARAMAN, S.; COLLIN, T.; PRADO, R. Automated garment manufacturing system using novel sensing and actuation. Proceedings of 2010 ISFA. 2010 International Symposium on Flexible Automation. Tokyo, Japan, Jul. 12-14, 2010. Acesso em: 06 set. 2021.

BRUNO, Flavio da Silveira. A Quarta Revolução Industrial do Setor Têxtil e de Confecção: a visão de futuro para 2030. 1. ed., 149 p. ISBN: 978-85-68552-31-5 . São Paulo: Estação das Letras e Cores, 2016. Acesso em: 08 set. 2021.

DICKENS, P.; KELLY, M.; WILLIAMS, J. R. What are the significant trends shaping technology relevant to manufacturing? Future of Manufacturing Project, Evidence Paper n. 6. Foresight. out. 2013. London: The Government Office for Science, 2013. Acesso em: 12 set. 2021.

EMEAGWALI, I. Performance Analysis of Steady-Hand Teleoperation versus Cooperative Manipulation. Symposium on Hapit Interfaces for Virtual Environment and Teleoperator Systems. Chicago: IEEE Virtual Reality, 2004. Acesso em: 12 set. 2021.

FORESIGHT. The Future of Manufacturing: a new era of opportunity and challenge for the UK. Summary Report. London: The Government Office for Science, 2013. Acesso em: 02 set. 2021.

GOLNABIA, H.; ASADPOURB, A. Design and application of industrial machine vision systems. v. 23, p. 630-637. Robotics and Computer-Integrated Manufacturing, 2007.

Acesso em: 02 set. 2021. Acesso em: 16 set. 2021.

MARAYONG, P. Motion Control Methods for Human-Machine Cooperative Systems. John Hopkins University, 2007. Acesso em: 16 set. 2021.

PESHKIN, M.; COLGATE, J. E. Cobots. Industrial Robot. v. 26, n. 5, p. 335-341. An International Journal, 1999. Acesso em: 16 set. 2021.

RIBEIRO, Fernando Manuel da Silva. Sistema Robótico Colaborativo utilizando Restrições Virtuais. Dissertação (Mestrado Integrado em Engenharia Mecânica). FEUP - Faculdade de Engenharia da Universidade do Porto. Porto: FEUP, 2010. Acesso em: 21 set. 2021.

RUSSEL, S.,NORVIG, P. Inteligencia Artificial, p,11-47. Campus, 2013. Acesso em: 21 set. 2021.

WANNASUPHOPRASIT, W.; MOORE, C. A.; GILLESPIE, R. B.; AKELLA, P. Cobot Architecture. v. 17, n. 4, p. 387-390. IEEE Transactions on Robotic and Automation, 2001. Acesso em: 23 set. 2021.

W. BAUER, M. BENDER, M. BRAUN, P. RALLY, and O. SCHOLTZ, Lightweight robots in manual assembly – best to start simply! Fraunhofer IAO, pp. 1–61, 2016. Acesso em: 23 set. 2021.

Universal Robots (2021a). Robôs Industriais e Cobots: Principais Diferenças.

Universal Robotics Company. Disponível em:

< https://www.universal-robots.com/br/blog/robos-industriais-e-cobots-principais-diferencas/>. Acesso em: 02 nov. 2021.

Universal Robots (2021b). Cobot UR10E Melhorou processo de Aplicação de Cola na Mercedes-Benz. Universal Robotics Company. Disponível em:

< https://www.universal-robots.com/br/casos-de-sucesso/mercedes-benz/ >.

Acesso em: 27 set. 2021.

Universal Robots (2021c). Universal Robots Garante uma entrega mais Rápida de Resultados de Amostras de Sangue. Universal Robotics Company. Disponível em:

< https://www.universal-robots.com/br/casos-de-sucesso/hospital-de-gentofte/ >.

Acesso em: 27 set. 2021.

Universal Robots (2021d). Robô Colaborativo para Paletização na Industria Alimentar, Sistema de visão para espaços apertados. Universal Robotics Company. Disponível em:

< https://www.universal-robots.com/br/casos-de-sucesso/nortura/>. Acesso em: 29 set. 2021.

Universal Robots (2021e). Empacotar Diferentes Produtos de uma mesma Linha de produção com um Único Cobot. Universal Robotics Company. Disponível em:

< https://www.universal-robots.com/br/casos-de-sucesso/natura/ >. Acesso em: 02 set. 2021.

Published

11/11/2021

How to Cite

Santoni, F., & Lucato, A. V. R. (2021). COLLABORATIVE ROBOTICS: THE USE OF ROBOTS IN PRODUCTION PROCESSES. RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 1(1), e210914. https://doi.org/10.47820/recima21.v1i1.914

Issue

Section

COURSE COMPLETION WORK - TCC

Categories