PREDICTION AND DIAGNOSIS OF ALZHEIMER’S USING MACHINE LEARNING TECHNIQUES

Authors

DOI:

https://doi.org/10.47820/recima21.v6i5.6399

Keywords:

Machine Learning. Alzheimer Disease. Classification. Supervised Machine Learning.

Abstract

This study aims to explore the use of machine learning techniques to predict the diagnosis of Alzheimer’s disease, a neurodegenerative condition that is challenging to detect early. The study employs techniques such as Support Vector Machine, Random Forest, and K-Nearest Neighbors, applying them to a dataset containing demographic, lifestyle, and medical history information from patients. The results enabled the evaluation of model performance using metrics such as accuracy, precision, recall, and specificity.

Downloads

Download data is not yet available.

Author Biographies

  • Luiz Fernando da Cunha Silva

    Graduando em Sistemas de Informação na Universidade Federal Rural do Semi-Árido - UFERSA.

  • Letícia Maria Bandeira de Lucena

    Graduanda em Sistemas de Informação na Universidade Federal Rural do Semi-Árido - UFERSA.

  • Samara Martins Nascimento Gonçalves

    Docente do Departamento de Ciências Exatas e Tecnologia na Universidade Federal Rural do Semi-Árido - UFERSA.

  • Verônica Maria Lima Silva

    Docente do Departamento de Sistemas de Computação na Universidade Federal da Paraíba - UFPB.

References

AHUJA, Abhimanyu S. The impact of artificial intelligence in medicine on the future role of the physician. PeerJ, v. 7, e7702, 2019. DOI: 10.7717/peerj.7702. Disponível em: https://peerj.com/articles/7702/. Acesso em: 27 abr. 2025. DOI: https://doi.org/10.7717/peerj.7702

ALATRANY, A. S.; KHAN, W.; HUSSAIN, A. et al. An explainable machine learning approach for Alzheimer’s disease classification. Scientific Reports, v. 14, p. 2637, 2024. Disponível em: https://doi.org/10.1038/s41598-024-51985-w. Acesso em: 09 out. 2024. DOI: https://doi.org/10.1038/s41598-024-51985-w

BANSAL, M.; GOYAL, A.; CHOUDHARY, A. A comparative analysis of K-Nearest Neighbor, Genetic, Support Vector Machine, Decision Tree, and Long Short Term Memory algorithms in machine learning. Decision Analytics Journal, [S. l.], v. 3, 2022. Disponível em: https://doi.org/10.1016/j.dajour.2022.100071. Acesso em: 14 out. 2024. DOI: https://doi.org/10.1016/j.dajour.2022.100071

BHARGAVA, A. Y. Entendendo Algoritmos: um guia ilustrado para programadores e outros curiosos. São Paulo: Novatec Editora, 2017. 264 p. ISBN 978-8575225639.

BREIMAN, L. Random forests. Machine Learning, v. 45, p. 5–32, 2001. Disponível em: https://doi.org/10.1023/A:1010933404324. Acesso em: 19 out. 2024. DOI: https://doi.org/10.1023/A:1010933404324

CARAMELLI, Paulo; BARBOSA, Maira Tonidandel. Como diagnosticar as quatro causas mais freqüentes de demência?. Brazilian Journal of Psychiatry, [S. l.], 2002. DOI https://doi.org/10.1590/S1Caramelli516-44462002000500003. Disponível em: https://www.scielo.br/j/rbp/a/wK6prKZXgrZwcyTB9TScPpH/. Acesso em: 25 out. 2024.

DARA, O. A.; LOPEZ-GUEDE, J. M.; RAHEEM, H. I.; RAHEBI, J.; ZULUETA, E.; FERNANDEZ-GAMIZ, U. Alzheimer’s Disease diagnosis using machine learning: a survey. Applied Sciences, v. 13, 8298, 18 jul. 2023. Disponível em: https://doi.org/10.3390/app13148298. Acesso em: 23 set. 2024. DOI: https://doi.org/10.3390/app13148298

DE OLIVEIRA, Bruna Cristina Bezerra; RABI, Larissa Teodoro. Métodos De Diagnóstico Precoce E Estratégias De Contenção Do Avanço Da Doença De Alzheimer. Revista Tópicos, [S. l.], 2023. DOI https://doi.org/10.5281/zenodo.10350113. Disponível em: https://zenodo.org/records/10350113. Acesso em: 25 out. 2024.

ESCOVEDO, Tatiana; KOSHIYAMA, Adriano. Introdução a Data Science: Algoritmos de Machine Learning e métodos de análise. [S. l.: s. n.], 2020.

FACELI, Katti; LORENA, Ana C.; GAMA, João; AL, et al. Inteligência Artificial: uma abordagem de aprendizado de máquina. 2. ed. Rio de Janeiro: LTC, 2021. E-book. p.1. ISBN 9788521637509. Disponível em: https://app.minhabiblioteca.com.br/reader/books/9788521637509/. Acesso em: 23 abr. 2025.

FARHUD, Dariush D.; ZOKAEI, Shaghayegh. Ethical issues of artificial intelligence in medicine and healthcare. Iranian Journal of Public Health, Tehran, v. 50, n. 11, p. i-v, nov. 2021. DOI: 10.18502/ijph.v50i11.7600. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC8826344/. Acesso em: 27 abr. 2025. DOI: https://doi.org/10.18502/ijph.v50i11.7600

GÓMEZ-ZARAGOZÁ, L.; WILLS, S.; TEJEDOR-GARCIA, C.; MARÍN-MORALES, J.; ALCAÑIZ, M.; STRIK, H. Alzheimer Disease Classification through ASR-based Transcriptions: Exploring the Impact of Punctuation and Pauses. Interspeech 2023, Irlanda, p. 2403-2407, 20 ago. 2023. Disponível em: https://arxiv.org/abs/2306.03443. Acesso em: 23 set. 2024. DOI: https://doi.org/10.21437/Interspeech.2023-1734

KHAROUA, R. E. Alzheimer's Disease Dataset. [S. l.]: Kaggle, 2024. Disponível em: https://www.kaggle.com/dsv/8668279. Acesso em: 02 out. 2024.

LI, J.; ZHANG, J.; ZHANG, J.; ZHANG, S. Quantum KNN Classification With K Value Selection and Neighbor Selection. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, [S. l.], v. 43, n. 5, p. 1332-1345, 2024. DOI 10.1109/TCAD.2023.3345251. Disponível em: https://ieeexplore.ieee.org/document/10366842. Acesso em: 20 out. 2024. DOI: https://doi.org/10.1109/TCAD.2023.3345251

MACHADO, A. P. R.; CARVALHO, I. O.; ROCHA SOBRINHO, H. M. da. Neuroinflamação Na Doença De Alzheimer. Revista Brasileira Militar De Ciências, [S. l.], v. 6, n. 14, 2020. DOI: 10.36414/rbmc.v6i14.33. Disponível em: https://rbmc.org.br/rbmc/article/view/33. Acesso em: 27 abr. 2025. DOI: https://doi.org/10.36414/rbmc.v6i14.33

PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.; et al. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, v. 12, p. 2825-2830, 2011. Disponível em: https://scikit-learn.org/stable/. Acesso em: 18 ago. 2024.

PISNER, D. A.; SCHNYER, D. M. Chapter 6 - Support vector machine. In: MACHINE Learning: Methods and Applications to Brain Disorders. Londres: Academic Press, 2020. p. 101-121. ISBN 9780128157398. Disponível em: https://doi.org/10.1016/B978-0-12-815739-8.00006-7. Acesso em: 14 out. 2024. DOI: https://doi.org/10.1016/B978-0-12-815739-8.00006-7

RAO, K. N.; GANDHI, B. R.; RAO, M. V.; JAVVADI, S.; VELLELA, S. S.; KHADER BASHA, S. Prediction and classification of Alzheimer’s disease using machine learning techniques in 3D MR images. In: International Conference On Sustainable Computing And Smart Systems (ICSCSS), 2023, Coimbatore, Índia. Anais […]. Coimbatore: IEEE, 2023. p. 85–90. DOI: 10.1109/ICSCSS57650.2023.10169550. DOI: https://doi.org/10.1109/ICSCSS57650.2023.10169550

RASHIDI, Hooman H; ALBAHRA, Samer; ROBERTSON, Scott; TRAN, Nam K; HU, Bo. Common statistical concepts in the supervised Machine Learning arena. Frontiers in Oncology, [S. l.], v. 13, 2023. DOI https://doi.org/10.3389/fonc.2023.1130229. Disponível em: https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2023.1130229/full. Acesso em: 24 out. 2024. DOI: https://doi.org/10.3389/fonc.2023.1130229

Published

07/05/2025

How to Cite

PREDICTION AND DIAGNOSIS OF ALZHEIMER’S USING MACHINE LEARNING TECHNIQUES. (2025). RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 6(5), e656399. https://doi.org/10.47820/recima21.v6i5.6399