PREDICCIÓN Y DIAGNÓSTICO DEL ALZHEIMER UTILIZANDO TÉCNICAS DE MACHINE LEARNING
DOI:
https://doi.org/10.47820/recima21.v6i5.6399Palabras clave:
Aprendizaje automático. Enfermedad de Alzheimer. Clasificación. Aprendizaje supervisado.Resumen
Este trabajo tiene como objetivo explorar el uso de técnicas de aprendizaje automático para predecir el diagnóstico de la enfermedad de Alzheimer, una condición neurodegenerativa de difícil detección temprana. El estudio utiliza técnicas como Support Vector Machine, Random Forest y K-Nearest Neighbors, aplicadas a un conjunto de datos que contiene información demográfica, de estilo de vida e historial médico de los pacientes. Los resultados obtenidos permitieron evaluar el rendimiento de los modelos a partir de métricas como exactitud, precisión, recall y especificidad.
Descargas
Referencias
AHUJA, Abhimanyu S. The impact of artificial intelligence in medicine on the future role of the physician. PeerJ, v. 7, e7702, 2019. DOI: 10.7717/peerj.7702. Disponível em: https://peerj.com/articles/7702/. Acesso em: 27 abr. 2025. DOI: https://doi.org/10.7717/peerj.7702
ALATRANY, A. S.; KHAN, W.; HUSSAIN, A. et al. An explainable machine learning approach for Alzheimer’s disease classification. Scientific Reports, v. 14, p. 2637, 2024. Disponível em: https://doi.org/10.1038/s41598-024-51985-w. Acesso em: 09 out. 2024. DOI: https://doi.org/10.1038/s41598-024-51985-w
BANSAL, M.; GOYAL, A.; CHOUDHARY, A. A comparative analysis of K-Nearest Neighbor, Genetic, Support Vector Machine, Decision Tree, and Long Short Term Memory algorithms in machine learning. Decision Analytics Journal, [S. l.], v. 3, 2022. Disponível em: https://doi.org/10.1016/j.dajour.2022.100071. Acesso em: 14 out. 2024. DOI: https://doi.org/10.1016/j.dajour.2022.100071
BHARGAVA, A. Y. Entendendo Algoritmos: um guia ilustrado para programadores e outros curiosos. São Paulo: Novatec Editora, 2017. 264 p. ISBN 978-8575225639.
BREIMAN, L. Random forests. Machine Learning, v. 45, p. 5–32, 2001. Disponível em: https://doi.org/10.1023/A:1010933404324. Acesso em: 19 out. 2024. DOI: https://doi.org/10.1023/A:1010933404324
CARAMELLI, Paulo; BARBOSA, Maira Tonidandel. Como diagnosticar as quatro causas mais freqüentes de demência?. Brazilian Journal of Psychiatry, [S. l.], 2002. DOI https://doi.org/10.1590/S1Caramelli516-44462002000500003. Disponível em: https://www.scielo.br/j/rbp/a/wK6prKZXgrZwcyTB9TScPpH/. Acesso em: 25 out. 2024.
DARA, O. A.; LOPEZ-GUEDE, J. M.; RAHEEM, H. I.; RAHEBI, J.; ZULUETA, E.; FERNANDEZ-GAMIZ, U. Alzheimer’s Disease diagnosis using machine learning: a survey. Applied Sciences, v. 13, 8298, 18 jul. 2023. Disponível em: https://doi.org/10.3390/app13148298. Acesso em: 23 set. 2024. DOI: https://doi.org/10.3390/app13148298
DE OLIVEIRA, Bruna Cristina Bezerra; RABI, Larissa Teodoro. Métodos De Diagnóstico Precoce E Estratégias De Contenção Do Avanço Da Doença De Alzheimer. Revista Tópicos, [S. l.], 2023. DOI https://doi.org/10.5281/zenodo.10350113. Disponível em: https://zenodo.org/records/10350113. Acesso em: 25 out. 2024.
ESCOVEDO, Tatiana; KOSHIYAMA, Adriano. Introdução a Data Science: Algoritmos de Machine Learning e métodos de análise. [S. l.: s. n.], 2020.
FACELI, Katti; LORENA, Ana C.; GAMA, João; AL, et al. Inteligência Artificial: uma abordagem de aprendizado de máquina. 2. ed. Rio de Janeiro: LTC, 2021. E-book. p.1. ISBN 9788521637509. Disponível em: https://app.minhabiblioteca.com.br/reader/books/9788521637509/. Acesso em: 23 abr. 2025.
FARHUD, Dariush D.; ZOKAEI, Shaghayegh. Ethical issues of artificial intelligence in medicine and healthcare. Iranian Journal of Public Health, Tehran, v. 50, n. 11, p. i-v, nov. 2021. DOI: 10.18502/ijph.v50i11.7600. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC8826344/. Acesso em: 27 abr. 2025. DOI: https://doi.org/10.18502/ijph.v50i11.7600
GÓMEZ-ZARAGOZÁ, L.; WILLS, S.; TEJEDOR-GARCIA, C.; MARÍN-MORALES, J.; ALCAÑIZ, M.; STRIK, H. Alzheimer Disease Classification through ASR-based Transcriptions: Exploring the Impact of Punctuation and Pauses. Interspeech 2023, Irlanda, p. 2403-2407, 20 ago. 2023. Disponível em: https://arxiv.org/abs/2306.03443. Acesso em: 23 set. 2024. DOI: https://doi.org/10.21437/Interspeech.2023-1734
KHAROUA, R. E. Alzheimer's Disease Dataset. [S. l.]: Kaggle, 2024. Disponível em: https://www.kaggle.com/dsv/8668279. Acesso em: 02 out. 2024.
LI, J.; ZHANG, J.; ZHANG, J.; ZHANG, S. Quantum KNN Classification With K Value Selection and Neighbor Selection. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, [S. l.], v. 43, n. 5, p. 1332-1345, 2024. DOI 10.1109/TCAD.2023.3345251. Disponível em: https://ieeexplore.ieee.org/document/10366842. Acesso em: 20 out. 2024. DOI: https://doi.org/10.1109/TCAD.2023.3345251
MACHADO, A. P. R.; CARVALHO, I. O.; ROCHA SOBRINHO, H. M. da. Neuroinflamação Na Doença De Alzheimer. Revista Brasileira Militar De Ciências, [S. l.], v. 6, n. 14, 2020. DOI: 10.36414/rbmc.v6i14.33. Disponível em: https://rbmc.org.br/rbmc/article/view/33. Acesso em: 27 abr. 2025. DOI: https://doi.org/10.36414/rbmc.v6i14.33
PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.; et al. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, v. 12, p. 2825-2830, 2011. Disponível em: https://scikit-learn.org/stable/. Acesso em: 18 ago. 2024.
PISNER, D. A.; SCHNYER, D. M. Chapter 6 - Support vector machine. In: MACHINE Learning: Methods and Applications to Brain Disorders. Londres: Academic Press, 2020. p. 101-121. ISBN 9780128157398. Disponível em: https://doi.org/10.1016/B978-0-12-815739-8.00006-7. Acesso em: 14 out. 2024. DOI: https://doi.org/10.1016/B978-0-12-815739-8.00006-7
RAO, K. N.; GANDHI, B. R.; RAO, M. V.; JAVVADI, S.; VELLELA, S. S.; KHADER BASHA, S. Prediction and classification of Alzheimer’s disease using machine learning techniques in 3D MR images. In: International Conference On Sustainable Computing And Smart Systems (ICSCSS), 2023, Coimbatore, Índia. Anais […]. Coimbatore: IEEE, 2023. p. 85–90. DOI: 10.1109/ICSCSS57650.2023.10169550. DOI: https://doi.org/10.1109/ICSCSS57650.2023.10169550
RASHIDI, Hooman H; ALBAHRA, Samer; ROBERTSON, Scott; TRAN, Nam K; HU, Bo. Common statistical concepts in the supervised Machine Learning arena. Frontiers in Oncology, [S. l.], v. 13, 2023. DOI https://doi.org/10.3389/fonc.2023.1130229. Disponível em: https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2023.1130229/full. Acesso em: 24 out. 2024. DOI: https://doi.org/10.3389/fonc.2023.1130229
Descargas
Publicado
Licencia
Derechos de autor 2025 RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECIMA21, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECIMA21 apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.