SYSTEMATIC LITERATURE REVIEW (SLR) OF MATHEMATICAL MODELS FOR ELECTRICTY DEMAND FORECASTING
DOI:
https://doi.org/10.47820/recima21.v3i10.2031Keywords:
Mathematical model, Electricity demand forecast, Electricity demandAbstract
Electricity is a basic input and socially excludes those who have no access to it. It promotes the development of a nation and, therefore, it is crucial to forecast the demand to support decision-making on the planning and implementation of the electrical infrastructure in a region. This study presents mathematical proposals and computing tools for estimating energy consumption increase. The objective is to conduct a systematic literature review of scientific studies on mathematical models that simulate energy demand forecasts. The systematic review search action plan consisted of three stages: input, processing and output. We used a protocol with strings and inclusion-exclusion criteria as a filter of publications in the databases. The filtered publications were processed according to criteria set per topic and objective in two stages: selection and extraction using the StArt software. By using Boolean and no filter search expressions, we obtained 982 papers – 785 in Scopus and 197 in Web of Science. By applying the protocol to these databases, 285 publications were filtered. According to the qualification criteria, 71 publications were filtered in the selection stage. In the extraction stage, using the same criteria for the previous stage, 20 publications were selected out of 71. Finally, we prepared a chart containing the contributions from each of these 20 papers with the research topic. The results can be used by academic and public policy researchers in the electricity sector, as well as electricity generation, transmission and distribution companies.
Downloads
References
ABDULKAREEM, A.; OKOROAFOR, E.J.; AWELEWA, A.; ADEKITAN, A. Pseudo-inverse matrix model for estimating long-term annual peak electricity demand: The covenant university's experience. International Journal of Energy Economics and Policy, 4. ed., Nigéria, v. 9, p. 103-109, maio 2019. DOI: 10.32479/ijeep.7566. Disponível em: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067405770&doi=10.32479%2fijeep.7566&partnerID=40&md5=cf35b54993edabfab6f3fad136fc64d1. Acesso em: 08 out. 2021.
AZEVEDO, D. Revisão de Literatura, Referencial Teórico, Fundamentação Teórica e
Framework Conceitual em Pesquisa – diferenças e propósitos. Working paper, Brasil, p. 1-10, 2016. Disponível em: https://unisinos.academia.edu/DeboraAzevedo/Papers. Acesso em: 21 nov. 2021.
BISOGNIN, C.; WERNER, L. Análise do consumo mensal de energia elétrica no Estado de São Paulo. REP – Revista de Engenharia de Produção, Brasil, v. 2, p. 59-72, jan./abr. 2020. Disponível em: https://periodicos.ufms.br/index.php/REP/article/view/9397. Acesso em: 08 out. 2021.
CONFORTO, E.C.; AMARAL, D.C.; SILVA, S.L. da. Roteiro para revisão bibliográfica sistemática : aplicação no desenvolvimento de produtos e gerenciamento de projetos. 8° Congresso Brasileiro de Gestão de Desenvolviemnto de Produto - CNGDP 2011, Porto Alegre, Rio Grande do Sul, Brasil, v. 8, p. 1–12, set. 2011. Disponível em: https://www.researchgate.net/publication/267380020_Roteiro_para_Revisao_Bibliografica_Sistematica_Aplicacao_no_Desenvolvimento_de_Produtos_e_Gerenciamento_de_Projetos. Acesso em: 29 out. 2021.
FAN, C.; XIAO, F.; WANG, S. Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques. Applied Energy, Hong Kong, v. 127, p. 1-10, 2014. DOI: 10.1016/j.apenergy.2014.04.016. Disponível em: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84899701114&doi=10.1016%2fj.apenergy.2014.04.016&partnerID=40&md5=9384074adcfefd1d6622e290ed54d625. Acesso em: 08 out. 2021.
HAGHNEVIS, M.; ASKIN, R.G. A modeling framework for engineered complex adaptive systems. IEEE Systems Journal, 3. ed., Estados Unidos, v. 6, p. 520-530, set. 2012. DOI: 10.1109/JSYST.2012.2190696. Disponível em: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84865500722&doi=10.1109%2fJSYST.2012.2190696&partnerID=40&md5=b72b906dc1642b7007a72eb78314ae1b. Acesso em: 08 out. 2021.
LEVY, Y.; ELLIS, T.J. A systems approach to conduct an effective literature review in support of information systems research. Informing Science Journal, Nova Southeastern University, Flórida, Estados Unidos, v. 9, p. 181–212, 2006. Disponível em: https://www.cs.ryerson.ca/aferworn/courses/CP8101/CLASSES/ConductingLiteratureReview.pdf. Acesso em: 29 out. 2021.
LIU, Y.; ZHAO, J.; LIU, J.; CHEN, Y.; OUYANG, H. Regional midterm electricity demand forecasting based on economic, weather, holiday, and events factors. IEEJ Transactions on Electrical and Electronic Engineering, 2. ed., China, v. 15, p. 225-234, 2020. DOI: 10.1002/tee.23049. Disponível em: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074857345&doi=10.1002%2ftee.23049&partnerID=40&md5=ec69f55fc7eb1f0daf4bba4d901da295. Acesso em: 08 out. 2021.
MARANGONI, F.; MAGATÃO, L.; DE ARRUDA, L.V.R. Demand response optimization model to energy and power expenses analysis and contract revision. Energies, 11. ed., Brasil, v. 13, p. 1-23, jun. 2020. DOI: 10.3390/en13112803. Disponível em: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086370091&doi=10.3390%2fen13112803&partnerID=40&md5=45f9bc9a41402f2b673c99d8123bf344. Acesso em: 08 out. 2021.
NAÇÕES UNIDAS BRASIL. Objetivos de desenvolvimento sustentável (ODS). Disponível em: https://brasil.un.org/pt-br/sdgs. Acesso em: 20 nov. 2021
NASCIMENTO, L. Orçamento do Luz para Todos em 2019 será de R$ 1,07 bilhão. Agência Brasil, Brasília, set. 2018. Disponível em: https://agenciabrasil.ebc.com.br/economia/noticia/2018-09/orcamento-do-luz-para-todos-em-2019-sera-de-r-107-bilhao. Acesso em: 18 nov. 2021.
TAGHIZADEH-YAZDI, M.; MOHAMMADI-BALANI, A. A mathematical model for multi-region, multi-source, multi-period generation expansion planning in renewable energy for country-wide generation-transmission planning. Journal of Information Technology Management, 4. ed., Irã, v. 12, p. 215-231, 2020. DOI: 10.22059/jitm.2020.298258.2476. Disponível em: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099813647&doi=10.22059%2fjitm.2020.298258.2476&partnerID=40&md5=6491aae48693ec897d81f15b2ab1c4e0. Acesso em: 08 out. 2021.
VU, D.H.; MUTTAQI, K.M.; AGALGAONKAR, A.P. A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables. Applied Energy, Austrália, v. 140, p. 385-394, 2015. DOI: 10.1016/j.apenergy.2014.12.011. Disponível em: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84919935314&doi=10.1016%2fj.apenergy.2014.12.011&partnerID=40&md5=b2876aee6c31888837a79074bc7356a1. Acesso em: 08 out. 2021.
WANG, J.; CHI, D.; WU, J.; LU, H.-Y. Chaotic time series method combined with particle swarm optimization and trend adjustment for electricity demand forecasting. Expert Systems with Applications, 7. ed., Austrália e China, v. 38, p. 8419-8429, 2011. DOI: 10.1016/j.eswa.2011.01.037. Disponível em: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79952448415&doi=10.1016%2fj.eswa.2011.01.037&partnerID=40&md5=daf8148c58db202894913a030ed155f8. Acesso em: 08 out. 2021.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2022 RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218
This work is licensed under a Creative Commons Attribution 4.0 International License.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECIMA21, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECIMA21 apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.