IMPACT OF ELECTROMAGNETIC PULSE ON PERI-IMPLANT: TISSUES CRITICAL ANALYSIS OF BIOLOGICAL EFFECTS

Authors

  • Jamil Awad Shibli
  • Silvestre Estrela da Silva Júnior
  • Luciene Cristina Figueiredo
  • José Augusto Rodrigues

DOI:

https://doi.org/10.47820/recima21.v3i12.2572

Keywords:

Electromagnetic Pulse, Osseointegration, Bone Healing.

Abstract

Osseointegration between implant and recipient bone tissue should occur properly, and bone integration is the key to surgical success. However, implants present on the market typically require 2 to 6 months without charge of the device to allow sufficient time for osseointegration. In recent years, the use of electromagnetic pulses (PEMF) has been investigated as a treatment to improve the integration of the implant into the receptor bone. The aim of this study was to conduct a scope review to evaluate the impact of the electromagnetic pulse on human peri-implant tissues. Searches were made on papers published until 2022 on pubmed, lilacs, scopus and scielo platforms. A broad research strategy was carried out in order to capture as many relevant studies as possible. A total of 23 articles were found in the literature. After reading the titles and abstracts, to evaluate the content, the studies were submitted to the inclusion and exclusion criteria, after which only two met the inclusion criteria. It can be concluded that stimulation with PEMF can be a useful tool to stimulate bone formation and bone growth around dental implants. This helps to reduce the time of osseointegration, allowing patients to return to the masticatory function, phonation and aesthetics more quickly, with the possibility of loading the implants early. Observing the few studies found in the literature, it is suggested that further research be conducted in order to prove and increase existing data on the subject.

Downloads

Download data is not yet available.

Author Biographies

  • Jamil Awad Shibli

    Professor doutor do programa de mestrado e doutorado de Odontologia da Universidade Guarulhos -UNG.

  • Silvestre Estrela da Silva Júnior,

    Mestrado em Odontologia pela Universidade de Guarulhos - UNG.

     

  • Luciene Cristina Figueiredo

    Professora do programa de mestrado e doutorado de Odontologia da Universidade Guarulhos - UNG. 

  • José Augusto Rodrigues

    Professor do programa de mestrado e doutorado de Odontologia da Universidade Guarulhos - UNG. 

References

ALSAADI, G.; QUIRYNEN, M.; KOMAREK, A. et al. Impact of local and systemic factors on the incidence of oral implant failures, up to abutment

connection. J Clin Periodontol, v. 34, n. 7, p. 610–617, 2007. doi: 10.1111/j.1600- 051X.2007.01077.x

ANDROJNA, C.; FORT, B.; ZBOROWSKI, M.; MIDURA, R. J. Pulsed

electromagnetic field treatment enhances healing callus biomechanical properties in an animal model of osteoporotic fracture. Bioelectromagnetics, v. 35, p. 396– 405, 2014.

BARAK, S.; NEUMAN, M.; IEZZI, G. et al. A new device for improving dental implants anchorage: a histological and micro-computed tomography study in the rabbit. Clin Oral Implants, v. 27, n. 8, p. 935–942, 2016.

BARAK, S.; MATALON, S.; DOLKART, O.; ZAVAN, B.; MORTELLARO, C.;

PIATTELLI, A. Miniaturized Electromagnetic Device Abutment Improves Stability of the Dental Implants. The Journal of Craniofacial Surgery, v. 30, n. 04, p. 1055- 1057, 2019.

BENIC, G. I.; WOLLEB, K.; SANCHO-PUCHADES, M.; HÄMMERLE, C. H.

Systematic review of parameters and methods for the professional assessment of aesthetics in dental implant research. Clin Oral implants Res, v.39, n. 12, p. 160- 192, 2012.

BILOTTA, T. W.; ZATI, A.; GNUDI, S.; FIGUS, E.; GIARDINO, R.; FINI, M.;

PRATELLI, L. et al.. Electromagnetic fields in the treatment of ostmenopausal osteoporosis: An experimental study conducted by densitometric, dry ash weight and metabolic analysis of bone tissue. Chir Organi Mov, v. 79, p. 309–313, 1994.

BOSSHARDT, D. D.; CHAPPUIS, V.; BUSER, D. Osseointegration of titanium, titanium alloy and zirconia dental implants: Current knowledge and open questions. Periodontology 2000, v. 73, n. 1, p. 22–40, 2017.

CHANG, K.; CHANG, WH-S. Pulsed electromagnetic Fields prevent osteoporosis in na ovariectomized female rat model: A prostaglandin E2-associated process. Ioelectromagnetics, v. 24, p.189–198, 2003.

CHANG, W. H.; CHEN, L. H.; SUN, J. S.; LIN, F. H. Effect of pulse-burst electromagneticfield stimulation on osteoblast cell activities. Bioelectromagnetics, v. 25, n. 6, p. 457–465, 2004.

CHEN P.; YU S.; ZHU G. The psychosocial impacts of implantation on the dental aesthetics of missing anterior teeth patients. Br Dent J, v. 213, n. 11, 2012.

CHEN, X.; CHEN, Y.; HOU, Y.; SONG, P.; ZHOU, M.; NIE, M.; LIU, X. Modulation of proliferation and differentiation of gingiva-derived mesenchymal stem cells by concentrated growth factors: potential implications in tissue engineering for dental regeneration and repair. Int J Mol Med, v. 44, n. 1, p. 37–46, 2019. https://doi.org/10.3892/ijmm.2019.4172

DAISH, C.; BLANCHARD, R.; FOX, K.; PIVONKA, P.; PIROGOVA, E. A aplicação de campos eletromagnéticos pulsados (PEMFs) para reparo de fraturas ósseas: descobertas passadas e perspectivas. Ann Biomed Eng, v. 46, n. 4, p. 525-542, 2018. https://doi.org/10.1007/s10439-018-1982-1

EMES, Y.; AKÇA, K.; AYBAR, B.; YALÇIN, S.; ÇAVUŞOĞLU, Y.; BAYSAL, U. et al. Low-level laser therapy vs. pulsed electromagnetic field on neonatal rat calvarial osteoblast-like cells. Lasers Med Sci, v. 28, n. 3, p. 901–909, 2013. https://doi.org/10.1007/s10103-012-1165-5

ESPOSITO, M.; GRUSOVIN, M. G.; ACHILLE, H. et al. Interventions for replacing missing teeth different times for loading dental implants. Cochrane Database Syst Rev, v. 21, n. 1, 2009. doi:10.1002/14651858.CD003878.pub4

FERRONI, L.; GARDIN, C.; DOLKART, O.; SALAI, M.; BARAK, S.; PIATTELLI, A.; AMIR-BARAK, H. et al. Pulsed electromagnetic fields increase osteogenetic commitment of MSCs via the mTOR pathway in TNF- α mediated inflammatory conditions: an in-vitro study. Sci Rep, v. 8, n. 1, p. 5108, 2018. https://doi.org/10.1038/s41598-018-23499-9

FU, Y. C.; LIN, C. C.; CHANG, J. K.; CHEN, C. H.; TAI, I. C.; WANG, G. J.; HO, M. L. 2014. A novel single pulsed electromagnetic field stimulates osteogenesis of bone marrow mesenchymal stem cells and bone repair. PLoS ONE, v.9, n. 3, 2014. doi: 10.1371/journal.pone.0091581

GALLI, C.; PEDRAZZI, G.; MATTIOLI-BELMONTE, M.; GUIZZARDI, S. The use of pulsed electromagnetic fields to promote bone responses to biomaterials in vitro and in vivo. International Journal of Biomaterials, v. 2018, p. 1- 15, 2018. https://doi.org/10.1155/2018/8935750

GALLI, C.; PEDRAZZI, G.; GUIZZARDI, S. The cellular effects of Pulsed Electromagnetic Fields on osteoblasts: A review. Bioelectromagnetics, v. 40, n. 4, p. 211-233, 2019. doi:10.1002/bem.22187. PMID: 30908726.

GRIFFIN, X. L.; COSTA, M. L.; PARSONS, N.; SMITH, N. Estimulação de campo eletromagnético para tratamento de união atrasada ou não união de fraturas de ossos longos em adultos. Banco de Dados Cochrane de Revisões Sistemáticas, 2011.

HANDOLL, H. H.; ELLIOTT, J. Reabilitação para fraturas do rádio distal em Adultos. Banco de Dados Cochrane de Revisões Sistemáticas, 2015.

HANNEMANN, P. F. W.; MOMMERS, E. H. H.; SCHOTS, J. P. M.; BRINK, P. R. G.; POEZE, M. Os efeitos do ultrassom pulsado de baixa intensidade e estimulação do crescimento ósseo de campos eletromagnéticos pulsados em fraturas agudas: uma revisão sistemática e meta-análise de ensaios clínicos randomizados. Arquivos de Cirurgia Ortopédica e Traumatológica, v. 134, n. 8, p. 1093-1106, 2014.

HE, Z.; SELVAMURUGAN N.; WARSHAW J.; PARTRIDGE N. C. Campos eletromagnéticos pulsados inibem a formação de osteoclastos humanos e a expressão gênica via osteoblastos. Osso, v. 106, p. 194-203, 2018. https://doi.org/10. 1016/j.bone.2017.09.020

JAVED, F.; AHMED, H. B.; CRESPI, R.; et al. Papel da estabilidade primária para o sucesso da osseointegração de implantes dentários: fatores de influência e avaliação. Interv Med Appl Sci, v. 5, p. 162-167, 2013.

JIANG, Y.; GOU, H.; WANG, S.; ZHU, J.; TIAN, S.; YU, L. Effect of pulsed electromagnetic field on bone formation and lipid metabolism of glucocorticoid- induced osteoporosis rats through canonical Wnt signaling pathway. Evidence- Based omplement Altern Med, 2016.

JING, D.; LI, F.; JIANG, M.; CAI, J.; WU, Y.; XIE, K.; WU, X. et al. Pulsed electromagnetic fields improve bone microstructure and strength in ovariectomized rats through a Wnt/Lrp5/b-catenin signalingassociated mechanism. PLoS ONE, v. 8, 2013.

JING, D.; SHEN, G.; HUANG, J.; XIE, K.; CAI, J.; XU, Q.; WU, X. et al. Circadian rhythm ffects the preventive role of pulsed electromagnetic fields on ovariectomy induced steoporosis in rats. Bone, v. 46, p. 487–495, 2010.

KIM, E. C.; LEESUNGBOK, R.; LEE, S. W.; HONG, J. Y.; KO, E. J.; AHN, S. J. Efeitos dos campos magnéticos estáticos na regeneração óssea de implantes no coelho: análises micro-CT, histológica, microarray e PCR em tempo real. Clin Oral Implants Res, v. 28, n. 4, p. 396–405, 2017. https://doi.org/ 10.1111/clr.12812

LEESUNGBOK, R.; AHN, S. J.; LEE, S. W.; PARK, G. H.; KANG, J. S.; CHOI, J. J. Os efeitos de um campo magnético estático na formação óssea ao redor de um implante de titânio tratado com ácido e jateado com areia grande. J Oral Implantol, v. 39, n. 1, 2013. https://doi.org/10.1563/AAID-JOI-D-11-00101

LEI, T.; LI, F.; LIANG, Z.; TANG, C.; XIE, K.; WANG, P.; DONG, X. et al. Effects of four kinds of electromagnetic fields (EMF) with different frequency spectrum bands on ovariectomized osteoporosis in mice. Sci Rep, v. 7, p. 553, 2017.

LEI, T.; LIANG, Z.; LI, F.; TANG, C.; XIE, K.; WANG, P.; DONG, X. et al. Pulsed electromagnetic fields (PEMF) attenuate changes in vertebral boné mass, architecture and strength in ovariectomized mice. Bone, v. 108, p. 10–19, 2018.

LELES C. R.; SILVA E. T.; OLIVEIRA R. T. O edentulismo no Brasil: epidemiologia, rede assistencial e produção de próteses pelo sistema único de saúde. Tempus, v. 9, n. 3, p. 121-134, 2015.

LI, K.; MA, S.; LI, Y.; DING, G.; TENG, Z.; LIU, J.; REN, D. et al. Effects of PEMF exposure at diferente pulses on osteogenesis of MC3T3-E1 cells. Arch Oral Biol,

v. 59, p. 921–927, 2014.

LI, J.; ZENG, Z.; ZHAO, Y.; JING, D.; TANG, C.; DING, Y.; FENG, X. Effects of low-intensity pulsed electromagnetic fields on bone microarchitecture, mechanical strength and boné turnover in type 2 diabetic db/db mice. Sci Rep, v. 7, 2017.

LIU, C.; YU, J.; YANG, Y.; TANG, X.; ZHAO, D.; ZHAO, W.; WU, H. Effect of 1mT sinusoidal electromagnetic fields on proliferation and osteogenic differentiation of rat bone marrow mesenchymal stromal cells. Bioelectromagnetics, v. 34, p. 453– 464, 2013.

LIU, C.; ZHANG, Y.; FU, T.; LIU, Y.; WEI, S.; YANG, Y.; ZHAO, D. et al. Effects of electromagnetic fields on bone loss in hyperthyroidism rat model. Bioelectromagnetics, v. 38, p. 137–150, 2017.

MASSARI, L.; BENAZZO, F.; FALEZ, F.; PERUGIA, D.; PIETROGRANDE, L.; SETTI, S. et al. Estimulação biofísica de osso e cartilagem: estado da arte e perspectivas futuras. Int Orthop, v.43, n. 3, p. 539–551, 2019. https://doi.org/10.1007/s00264-018-4274-3

MATIELLO, C. N.; TRENTIN, M. S. Implante dentário com carga imediata na região anterior superior: relato de caso clínico. RFO UPF [online], v. 20, n.2, p. 238-242, 2015. ISSN 1413-4012.

MARKOV, M. S. Magnetic field therapy: A review. Electromagn Biol Med, v. 26,

p. 1–23, 2007.

NAITO, Y.; YAMADA, S.; JINNO, Y.; ARAI, K.; GALLI, S.; ICHIKAWA, T. et al.

Efeito formador de osso de um campo magnético estático em fêmures de coelho. Int J Periodontia Restauradora Dente, v. 39, n. 2, p. 259-264, 2019. https://doi.org/10.11607/prd.3220

NAYAK, B. P.; DOLKART, O.; SATWALEKAR, P.; KUMAR, Y. P.; CHANDRASEKAR, A.; FROMOVICH, O.; YAKOBSON, E. et al. Effect of the

Pulsed Electromagnetic Field (PEMF) on Dental Implants Stability: A Randomized Controlled Clinical Trial. Materials, v. 13, p. 1667, 2020. doi:10.3390/ma13071667

NUNES, C. M. M.; FERREIRA, C. L.; BERNARDO, D. V.; LOPES, C. C. R.; COLLINO, L.; DA SILVA LIMA, V. C.; DE CAMARGO REIS MELLO, D. et al.

Evaluation of pulsed electromagnetic field protocols in implant osseointegration: in vivo and in vitro study. Clin Oral Investig, v. 25, n. 5, p. 2925-2937, 2021. doi: 10.1007/s00784-020-03612-x.

ROSS, C. L.; SIRIWARDANE, M.; ALMEIDA-PORADA, G.; PORADA, C. D.; BINK,

P.; CHRIST, G. J.; HARRISON, B. S. O efeito do campo eletromagnético de baixa frequência na diferenciação de células-tronco/progenitoras da medula óssea humana. Célula-tronco Res, v. 15, n. 1, p. 96–108, 2015. https://doi.org/10.1016/j.scr.2015.04.009

SAKKA, S.; BAROUDI, K.; NASSANI, M. Z. Fatores associados à falha precoce e tardia de implantes dentários. J Investig Clin Dent, v. 3, p. 258-261, 2012.

SELVAMURUGAN, N.; HE, Z.; RIFKIN, D.; DABOVIC, B.; PARTRIDGE, N. C. O campo eletromagnético pulsado regula a expressão do microrna 21 para ativar a sinalização de tgf-β nas células estromais da medula óssea humana para melhorar a diferenciação dos osteoblastos. Stem Cells Int, v. 24, p. :503–527, 2017. https://doi.org/10.1155/2017/2450327

SMITH, T. L.; WONG-GIBBONS, D.; MAULTSBY, J. Microcirculatory effects of pulsed electromagnetic fields. J Orthop Res, v. 22, n. 1, p. 80–84, 2004. doi: 10.1016/S0736-0266(03)00157-8

SPADARO, J. Efeitos Musculoesqueléticos e Aplicações de Campos electromagnéticos. Aspectos Biológicos e Biomédicos dos Campos Eletromagnéticos. Boca Raton, n. 1 p. 285-304, 2018.

TONG, J.; SUN, L.; ZHU, B.; FAN, Y.; MA, X.; YU, L.; ZHANG, J. Campos

eletromagnéticos pulsados promovem a proliferação e diferenciação de osteoblastos reforçando os transientes de cálcio intracelular. Bioelectromagnetics, v. 38, n. 7, p. 541–549, 2017. https://doi.org/10.1002/bem.

WROBEL, E.; LESZCZYNSKA, J.; BRZOSKA, E. As características das células derivadas do osso humano (HBDCS) durante a osteogênese in vitro. Cell Mol Biol Lett, v. 21, n. 26, 2016. https://doi.org/10.1186/ s11658-016-0027-8

YANG, X.; HE, H.; ZHOU, Y.; ZHOU, Y.; GAO, Q.; WANG, P.; HE, C. Pulsed

electromagnetic field at different stages of knee osteoarthritis in rats induced by low-dose monosodium iodoacetate: Effect on subchondral trabecular bone microarchitecture and cartilage degradation. Bioelectromagnetics, v. 38, p. 227– 238, 2017.

ZATI, A.; GNUDI, S.; MONGIORGI, R.; GIARDINO, R.; FINI, M.; VALDR, G.; GALLIANI, I. et al. Effects of pulsed magnetic fields in the therapy of osteoporosis induced by ovariectomy in the rat. Boll Soc Ital Biol Sper, v. 69, p. 469–475, 1993.

ZHANG, X.; ZHANG, J.; QU, X.; WEN, J. Effects of diferente extremely low- frequency electromagnetic fields on osteoblasts. Electromagn Biol Med, v. 26, p. 167–177, 2007.

ZHOU, J.; HE, H.; YANG, L.; CHEN, S.; GUO, H.; XIA, L.; LIU, H. et al. Effects of pulsed electromagnetic fields on bone mass and Wnt/b-catenin signaling pathway in ovariectomized rats. Arch Med Res, v, 43, p. 274–282, 2012.

ZHOU, J.; CHEN, S.; GUO, H.; XIA, L.; LIU, H.; QIN, Y.; HE, C. Pulsed electromagnetic field stimulates osteoprotegerin and reduces RANKL expression in ovariectomized rats. Rheumatol Int, v. 33, p. 1135–1141, 2013.

ZHOU, J.; WANG, J. Q.; GE, B. F.; MA, X. N.; MA, H. P.; XIAN, C. J.; CHEN, K. M. Different electromagnetic field waveforms have different effects on proliferation, differentiation and mineralization of osteoblasts in vitro. Bioelectromagnetics, v. 35, p. 30–38, 2014.

ZHOU, J.; LIAO, Y.; XIE, H.; LIAO, Y.; ZENG, Y.; LI, N.; SUN, G. et al. Effects of

combined treatment with ibandronate and pulsed electromagnetic field on ovariectomy- induced osteoporosis in rats. Bioelectromagnetics, v. 38, p. 31–40, 2017a.

ZHOU, J.; LIAO, Y.; ZENG, Y.; XIE, H.; FU, C.; LI, N. Effect of intervention initiation timing of pulsed electromagnetic field on ovariectomy-induced osteoporosis in rats. Bioelectromagnetics, v. 38, p. 456–465, 2017b.

Published

27/12/2022

How to Cite

IMPACT OF ELECTROMAGNETIC PULSE ON PERI-IMPLANT: TISSUES CRITICAL ANALYSIS OF BIOLOGICAL EFFECTS. (2022). RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 3(12), e3122572. https://doi.org/10.47820/recima21.v3i12.2572