HOMOLOGY AND COHOMOLOGY WITH COEFFICIENT IN F_2

Authors

DOI:

https://doi.org/10.47820/recima21.v4i6.3368

Keywords:

study algebraic topology tools: homology and cohomology

Abstract

This article aims to study algebraic topology tools: homology and cohomology in the field F_2 = {0, 1}. Therefore, we will present fundamental concepts for the understanding of this construction: category, functors, topological spaces and real projective space.  

 

Downloads

Download data is not yet available.

Author Biographies

  • Lia Nojosa Sena

    Master  degree in Mathematics from the Federal University of Ceará.

  • Thiago Amaral Melo Lima
    Professor at the Federal Institute of Education, Science and Technology of the Sertão Pernambucano - Campus Salgueiro.
  • Rubens Cainan Saboia Monteiro

    Master degree in Mathematics from the Federal University of Ceará.

References

BORGES, H.; TENGAN, E. Álgebra comutativa em quatro movimentos. Rio de Janeiro: IMPA, 2015.

LIMA, E L. Curso de análise, vol 2. 11.ed. Rio de Janeiro: IMPA, 2014.

LIMA, E L. Elementos de topologia geral. Rio de Janeiro: Editora SBM, 2009.

LIMA, E L. Homologia básica. 2.ed. Rio de Janeiro: IMPA, 2012.

HATCHER, A. Algebraic topology, 2001. Disponível em: Acesso em: 24 de abril de 2023.

HUNGERFORD, T. W. Graduate texts in mathematics, Algebra. 8. ed. New York: Springer, 2003.

LANG, S. Graduate texts in mathematics, Algebra. 3. ed. New York: Springer, 2002.

LEE, J. M. Graduate texts in mathematics, Introduction to Smooth Manifolds. 2. ed. New York: Springer, 2012.

Published

26/06/2023

How to Cite

HOMOLOGY AND COHOMOLOGY WITH COEFFICIENT IN F_2. (2023). RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 4(6), e463368. https://doi.org/10.47820/recima21.v4i6.3368