COMPUTER VISION FOR AUTONOMOUS VISUAL INSPECTION IN INDUSTRIAL PRODUCTION LINES

Authors

  • Arthur Parente
  • Eduardo Magalhães do Valle
  • Vilson Oliveira
  • Frank Choite Ikuno
  • Weslley Tapajos
  • Luiz Carlos da Silva Garcia Junior
  • Alessandra Duarte Silva

DOI:

https://doi.org/10.47820/recima21.v6i3.6177

Keywords:

Computer vision. Vision application. Industrial environments.

Abstract

This article has the specific objectives of highlighting the computer vision techniques used in the IVAP project, discussing the stages of implementation of the system and analyzing the results obtained. Throughout this study, we hope to contribute to the existing literature on the application of computer vision in industry, citing examples from authors such as Gerald J. Agin (1980) and Rodrigo Barbosa Davies (2012), who explored the practice and effectiveness of these technologies in industrial settings. Computer vision has established itself as an essential tool for visual inspection in industrial production lines, promoting significant improvements in the quality and efficiency of manufacturing processes. This study addresses the implementation of an advanced computer vision system in the IVAP (Visual Autonomous Product Inspection) project, developed in partnership between the Conecthus Institute and Vantiva. The implementation of the Keyence CV-X Series system was motivated by the need to perform autonomous inspections, standardizing product quality without relying on manual evaluations, which are prone to errors. The development of the project focused on the use of sophisticated computer vision techniques, including defect detection and classification through machine learning algorithms for image processing and cosmetic defect analysis. The techniques used were studied and adapted to the industrial context, allowing the detailed inspection of cosmetic aspects of the products, with minimal exceptions. These techniques, which included lighting adjustments, camera sensitivity, and algorithms for detecting smudges and scratches, were crucial to the system's effectiveness. 

Downloads

Download data is not yet available.

Author Biographies

  • Arthur Parente

    Instituto Conecthus - Tecnologia e Biotecnologia do Amazonas.

  • Eduardo Magalhães do Valle

    Instituto Conecthus - Tecnologia e Biotecnologia do Amazonas.

  • Vilson Oliveira

    Instituto Conecthus - Tecnologia e Biotecnologia do Amazonas.

  • Frank Choite Ikuno

    Instituto Conecthus - Tecnologia e Biotecnologia do Amazonas.

  • Weslley Tapajos

    Instituto Conecthus - Tecnologia e Biotecnologia do Amazonas.

  • Luiz Carlos da Silva Garcia Junior

    Instituto Conecthus - Tecnologia e Biotecnologia do Amazonas.

  • Alessandra Duarte Silva

    Instituto Conecthus - Tecnologia e Biotecnologia do Amazonas.

References

BENBARRAD, T.; SALHAOUI, M.; KENITAR, S. B. et al. Intelligent machine vision model for defective product inspection based on machine learning. Journal of Sensor and Actuator Networks, v. 10, n. 1, p. 7, 2021. DOI: https://doi.org/10.3390/jsan10010007

CHEN, Y. W.; SHIU, J. M. An implementation of YOLO-family algorithms in classifying the product quality for the acrylonitrile butadiene styrene metallization. The International Journal of Advanced Manufacturing Technology, v. 119, n. 11, p. 8257–8269, 2022. https://doi.org/10.1007/s00170-022-08676-5 DOI: https://doi.org/10.1007/s00170-022-08676-5

DAVIES, E. Computer and machine vision: Theory, algorithms, practicalities. 4 ed. [S. l.]: Academic Press, 2012. https://doi.org/10.1016/C2010-0-66926-4 DOI: https://doi.org/10.1016/C2010-0-66926-4

FORSYTH, D.; PONCE, J. Computer vision: A modern approach. 2 ed. [S. l..]: Pearson, 2012.

HÜTTEN, N.; GOMES, M. A.; HÖLKEN, F. et al. Deep learning for automated visual inspection in manufacturing and maintenance: A survey of open-access papers. Applied System Innovation, v. 7, n. 1, 2024. https://doi.org/10.3390/asi7010011 DOI: https://doi.org/10.3390/asi7010011

LI, Y.; HUANG, H.; XIE, Q. et al. Research on a surface defect detection algorithm based on MobileNet-SSD. Applied Sciences, v. 8, n. 9, p. 1678, 2018. DOI: https://doi.org/10.3390/app8091678

LIN, C.-Y.; CHOU, Y.-H.; CHENG, Y.-C. A deep learning-based general defect detection framework for automated optical inspection. In: 2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT). 2023. p. 332–337. https://doi.org/10.1109/IAICT59002.2023.10205799 DOI: https://doi.org/10.1109/IAICT59002.2023.10205799

LIU, W.; ANGUELOV, D.; ERHAN, D. et al. SSD: Single shot multibox detector. In: LEIBE, B.; MATAS, J.; SEBE, N.; WELLING, M. (Eds.). Computer Vision – ECCV 2016. [S. l.]: Springer International Publishing, 2016. p. 21–37. DOI: https://doi.org/10.1007/978-3-319-46448-0_2

LIU, X.; WANG, J.; ZHANG, R. et al. Deep learning-based defect detection for printed circuit boards. In: SHEN, L.; ZHONG, G. (Eds.). Third International Conference on Computer Vision and Pattern Analysis (ICCPA). 2023.p. 127543I). International Society for Optics and Photonics SPIE. https://doi.org/10.1117/12.2684258 DOI: https://doi.org/10.1117/12.2684258

REDMON, J.; DIVVALA, S.; GIRSHICK, R. et al. You only look once: Unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016. p. 779–788. https://doi.org/10.1109/CVPR.2016.91 DOI: https://doi.org/10.1109/CVPR.2016.91

SERRA, J. Image analysis and mathematical morphology. [S. l.]: Academic Press, 1982.

SILVA, W. R. L. D.; LUCENA, D. S. Concrete cracks detection based on deep learning image classification. Proceedings, v. 2, n. 8, 2018. https://doi.org/10.3390/ICEM18-05387 DOI: https://doi.org/10.3390/ICEM18-05387

STEGER, C.; ULRICH, M.; WIEDEMANN, C. Machine vision algorithms and applications. [S. l.]: John Wiley & Sons, 2018.

SZELISKI, R. Computer vision: Algorithms and applications. [S. l.]: Springer, 2011. DOI: https://doi.org/10.1007/978-1-84882-935-0

THOLEY, N. Digital processing of earth observation images. Surveys in Geophysics, v. 21, p. 209–222, 2000. https://doi.org/10.1023/A:1006714832064. DOI: https://doi.org/10.1023/A:1006714832064

WU, X.; GE, Y.; ZHANG, Q. et al. PCB defect detection using deep learning methods. In: IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD). 2021. p. 873–876. https://doi.org/10.1109/CSCWD49262.2021.9437846 DOI: https://doi.org/10.1109/CSCWD49262.2021.9437846

ZHU, L.; SPACHOS, P.; PENSINI, E. et al. Deep learning and machine vision for food processing: A survey. Current Research in Food Science, v. 4, p. 233–249, 2021. https://doi.org/10.1016/j.crfs.2021.03.009. DOI: https://doi.org/10.1016/j.crfs.2021.03.009

Downloads

Published

28/02/2025

How to Cite

COMPUTER VISION FOR AUTONOMOUS VISUAL INSPECTION IN INDUSTRIAL PRODUCTION LINES. (2025). RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 6(3), e636177. https://doi.org/10.47820/recima21.v6i3.6177