PHAGE THERAPY: AN INNOVATIVE APPROACH TO TREATING INFECTIONS CAUSED BY RESISTANT BACTERIA

Authors

DOI:

https://doi.org/10.47820/recima21.v6i2.6264

Keywords:

Bacteriophages, Phage Therapy, Bacterial Resistence, Antibiotics

Abstract

Among the problems facing infectious diseases today, bacterial resistance to antibiotics is a significant threat to public health, especially in terms of treating infections. Thus, in an era of antibiotic resistance, bacteriophages have become a potential therapeutic product against infections. Bacteriophages are viruses that infect bacteria with high specificity and can also be designed, using genetic engineering, to exterminate antibiotic-resistant strains. At least 1 million people a year are affected by resistant infections in Brazil, the most worrying bacteria being Klebsiella pneumoniae, Escherichia coli and Acinetobacter baumanii. Phage therapy can be divided into two main approaches: personalized and non-personalized, with the former having better results. Phages proved to be well tolerated and safe, regardless of the route used. However, clinical trials still lack complete systematization of the methodology, and it is crucial to promote and invest in well-structured clinical trials to guarantee better results for patients

Downloads

Download data is not yet available.

Author Biographies

  • Jaqueline Corrêa de Souza

    Discente do curso de Bacharelado em Biomedicina pela Faculdade UNITERP-FACTERP, São José do Rio Preto, São Paulo. 

  • Mateus Alexandre Maestrella Basilio

    Mestrando em Microbiologia pela Universidade Estadual Paulista (UNESP), MBA em Gestão de Saúde pelo Centro Universitário São Camilo. Docente do curso de Biomedicina da Faculdade UNITERP-FACTERP, São Josè do Rio Preto, São Paulo.

  • Mayara Gambellini Gonçalves

    Mestre em Microbiologia pela Universidade Estadual Paulista (UNESP). Especialista em Saúde Pública. Coordenadora e docente do curso de Biomedicina da Faculdade UNITERP-FACTERP, São José do Rio Preto, São Paulo 

     

References

ABEDON, S. T. Information Phage Therapy Research Should Report. Pharmaceuticals, [S. l.], v. 10, n. 2, abr. 2017. DOI: 10.3390/ph10020043. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5490400/. Acesso em: 06 set. 2024. DOI: https://doi.org/10.3390/ph10020043

ADVOCATING for phage therapy. Nature Microbiology, [S. l.], v. 9, p.1397–1398, jun. 2024. DOI: https://doi.org/10.1038/s41564-024-01733-7. Disponível em: https://www.nature.com/articles/s41564-024-01733-7#article-info. Acesso em 20 set. 2024. DOI: https://doi.org/10.1038/s41564-024-01733-7

ALEKSHUN, M. N.; LEVY, S. B. Molecular Mechanisms of Antibacterial Multidrug Resistance. Cell, [S. l.], v. 23, n.128, p.1037-1050, mai. 2007. DOI: 10.1016/j.cell.2007.03.004. Disponível em: https://www.cell.com/action/showPdf?pii=S0092-8674%2807%2900311-X. Acesso em: 2024. DOI: https://doi.org/10.1016/j.cell.2007.03.004

ANTIMICROBIAL RESISTANCE COLLABORATORS. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet, [S. l.], v. 399, p. 629-655, fev. 2022. DOI: 10.1016/S0140-6736(21)02724-0. Disponível em: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)02724-0/fulltext. Acesso em: 26 ago. 2024.

ANVISA - AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA. Confira dados mundiais sobre resistência microbiana. Brasilia: ANVISA, 23 nov. 2021. Disponível em: https://www.gov.br/anvisa/pt-br/assuntos/noticias-anvisa/2021/confira-dados-mundiais-sobre-resistencia-microbiana. Acesso em: 17 mar. 2024.

BALASUBRAMANIAN R. et al. Global incidence in hospital-associated infections resistant to antibiotics: An analysis of point prevalence surveys from 99 countries. PLoS Medicine, [S. l.], v. 20, n. 6, jun. 2023. DOI: doi.org/10.1371/journal.pmed.1004178. Disponível em: https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1004178. Acesso em: 30 ago. 2024. DOI: https://doi.org/10.1371/journal.pmed.1004178

BANCO MUNDIAL. Drug-Resistant Infections: A Threat to Our Economic Future. Washington, DC: World Bank, 2017. Disponível em: https://www.worldbank.org/en/topic/health/publication/drug-resistant-infections-a-threat-to-our-economic-future. Acesso em: 06 set. 2024.

BRAGG, R. et al. First International Conference, Advances in Experimental Medicine and Biology. Bacteriophages as potential treatment option for antibiotic resistant bactéria, New Delhi, v. 807, p. 97-110, 2014. DOI: 10.1007/978-81-322-1777-0_7. Disponível em: https://pubmed.ncbi.nlm.nih.gov/24619620/. Acesso em: 04 mar. 2024. DOI: https://doi.org/10.1007/978-81-322-1777-0_7

BRIVES, C.; POURRAZ, J. Phage therapy as a potential solution in the fight against AMR: obstacles and possible futures. Palgrave Commun, [S. l.], v. 6, n. 100, p. 1-11, 2020. DOI: https://doi.org/10.1057/s41599-020-0478-4. Disponível em: https://www.nature.com/articles/s41599-020-0478-4#citeas. Acesso em: 25 jun. 2024. DOI: https://doi.org/10.1057/s41599-020-0478-4

CDC - CENTERS FOR DISEASE CONTROL AND PREVENTION. Antibiotic resistance threats in the United States. Atlanta, GA: U.S. Department of Health and Human Services, CDC; 2019. Disponível em: http://dx.do.i.org/10.15620/cdc:82532. Acesso em: 30 ago. 2024.

CHEVALLEREAU, A. et al. Interactions between bacterial and phage communities in natural environments. Nat. Rev. Microbiol, [S. l.], v. 20, n. 1, p. 49-62, jan. 2022. DOI: 10.1038/s41579-021-00602-y. Disponível em: https://pubmed.ncbi.nlm.nih.gov/34373631/. Acesso em: 18 maio 2024. DOI: https://doi.org/10.1038/s41579-021-00602-y

CLOKIE, M. R. et al. Phages in nature. Bacteriophage, [S. l.], v. 1, n. 1, p. 31-45, jan. 2011. DOI: 10.4161/bact.1.1.14942. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3109452/. Acesso em: 01 mai. 2024. DOI: https://doi.org/10.4161/bact.1.1.14942

COHEN, N. Antibiotic resistance: a battle of wits versus natural selection. [S. l.], Harvard University, 2011. Disponível em: https://sitn.hms.harvard.edu/flash/2011/issue103/ Acesso em: 28 maio 2024.

CONLY, J.; JOHNSTON, B. Where are all the new antibiotics? The new antibiotic paradox. Canadian Journal of Infectious Diseases and Medical Microbiology, [s.l.], v. 16, n.3, p. 159-160, mai. 2005. DOI: 10.1155/2005/892058. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2095020/. Acesso em: 04 mar. 2024. DOI: https://doi.org/10.1155/2005/892058

DEDRICK, R. M. et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nature Medicine, [S. l.], v. 25, n. 5, p. 730-733, mai. 2019. DOI: 10.1038/s41591-019-0437-z. Disponível em: https://www.nature.com/articles/s41591-019-0437-z. Acesso em: 26 ago. 2024. DOI: https://doi.org/10.1038/s41591-019-0437-z

D'HERELLE, F. Bacteriophage as a Treatment in Acute Medical and Surgical Infections. Bull New York Academy of Medicine. New York, v. 7, n. 5, p. 329-348, mao 1931. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2095997/?page=1. Acesso em: 06 ago. 2024.

FEDOROV, E. et al. Short-Term Outcomes of Phage-Antibiotic Combination Treatment in Adult Patients with Periprosthetic Hip Joint Infection. Viruses, [S. l.], v, 15, n. 2, p. 499, fev. 2023. DOI: 10.3390/v15020499. Disponível em: https://pubmed.ncbi.nlm.nih.gov/36851713/. Acesso em: 14 out. 2024. DOI: https://doi.org/10.3390/v15020499

FLEMING, A. Chemotherapy: Yesterday, To-Day, and To-Morrow. Cambridge: Cambridge University Press, 1946. p. 39.

FRIEDEN, T. Centers for Disease Control and Prevention. Antibiotic resistance threats. United States: Department of Health and Human Services; 2013. Disponível em: https://www.cdc.gov/antimicrobialresistance/media/pdfs/arthreats2013508.pdf?CDC_AAref_Val=https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf. Acesso em:17 mar. 2024.

GENCAY, Y. E. et al. Engineered phage with antibacterial CRISPR–Cas selectively reduce E. coli burden in mice. Nature Biotechnology, [S. l.], v. 42, p. 265–274, fev. 2024. DOI: https://doi.org/10.1038/s41587-023-01759-y. Disponível em: https://www.nature.com/articles/s41587-023-01759-y. Acesso em: 06 set. 2024. DOI: https://doi.org/10.1038/s41587-023-01759-y

GOODRIDGE, L.; ABEDON, S. T. Bacteriophage biocontrol and bioprocessing: Application of phage therapy to industry. SIM News, [S. l.], v. 53, n. 6, p. 254-262, nov./dez. 2003. Disponível em: https://www.researchgate.net/publication/242411977_Bacteriophage_biocontrol_and_bioprocessing_Application_of_phage_therapy_to_industry. Acesso em: 26 mar. 2024.

HATFULL, G. F.; DEDRICK, R. M; SCHOOLEY, R. T. Phage Therapy for Antibiotic-Resistant Bacterial Infections. Annual Review of Medicine, [S. l.], v. 73, n. 27 p.197-211, jan. 2022. DOI: 10.1146/annurev-med-080219-122208. Disponível em: https://www.annualreviews.org/content/journals/10.1146/annurev-med-080219-122208#right-ref-B1. Acesso em: 10 abr. 2024. DOI: https://doi.org/10.1146/annurev-med-080219-122208

HITCHCOCK, N. M. et al. Current Clinical Landscape and Global Potential of Bacteriophage Therapy. Viruses, [S. l.], v. 15, n.4: 1020, abr. 2023. DOI: 10.3390/v15041020. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10146840/. Acesso em: 06 set. 2024. DOI: https://doi.org/10.3390/v15041020

JASSIM, S. A.; LIMOGES, R. G. Natural solution to antibiotic resistance: bacteriophages 'The Living Drugs'. World Jounal Microbiology Biotechnology, [S. l.], v. 30, n. 8, p. 2153-2170, ago. 2014. DOI: 10.1007/s11274-014-1655-7. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4072922/. Acesso em: 10 abr. 2024. DOI: https://doi.org/10.1007/s11274-014-1655-7

JAULT, P. et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infectious Disease, [S. l.], v. 19, p. 35-45, jan. 2019. DOI: 10.1016/S1473-3099(18)30482-1. Disponível em: https://pubmed.ncbi.nlm.nih.gov/30292481/. Acesso em: 20 set. 2024. DOI: https://doi.org/10.1016/S1473-3099(18)30482-1

KAKASIS, A.; PANITSA, G. Bacteriophage therapy as an alternative treatment for human infections. A comprehensive review. International Journal of Antimicrobial Agents, [S. l.], v. 53, n. 1, p. 16-21, jan. 2019. DOI: 10.1016/j.ijantimicag.2018.09.004. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0924857918302632?via%3Dihub. Acesso em: 10 abr. 2024. DOI: https://doi.org/10.1016/j.ijantimicag.2018.09.004

LEITNER, L. et al. Intravesical bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomised, placebo-controlled, double-blind clinical trial. Lancet Infectious Disease, [S. l.], v. 21, n. 3, p. 427-436, mar. 2021. DOI: 10.1016/S1473-3099(20)30330-3. Disponível em: https://pubmed.ncbi.nlm.nih.gov/32949500/. Acesso em: 18 set. 2024. DOI: https://doi.org/10.1016/S1473-3099(20)30330-3

LUONG, T.; SALABARRIA, A.C.; ROACH, D.R. Phage Therapy in the Resistance Era: Where Do We Stand and Where Are We Going? Clinical Theraphy, [S. l.], v. 42, n. 9, p. 1659-1680, set. 2020. DOI: 10.1016/j.clinthera.2020.07.014. Disponível em: https://www.clinicaltherapeutics.com/article/S0149-2918(20)30348-9/fulltext. Acesso em: 11 maio 2024. DOI: https://doi.org/10.1016/j.clinthera.2020.07.014

MALIK, D. J. et al. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Advances in Colloid and Interface Science, [S. l.], v.249, p. 100-133, nov. 2017. DOI: 10.1016/j.cis.2017.05.014. Disponível em: https://www.sciencedirect.com/science/article/pii/S000186861630392X?via%3Dihub. Acesso em: 16 dez. 2024. DOI: https://doi.org/10.1016/j.cis.2017.05.014

MARCUK, L. M. et al. Clinical studies of the use of bacteriophage in the treatment of cholera. Bulletin of the World Health Organization, [S. l.], v. 45, n. 1, p. 77-83, 1971. Disponível em: https://pubmed.ncbi.nlm.nih.gov/4946956/. Acesso em: 14 out. 2024.

MUTEEB, et al. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals (Basel), [S. l.], v. 16, n. 11, p. 1615, nov. 2023. DOI: 10.3390/ph16111615. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675245/ Acesso em: 28 ago. 2024. DOI: https://doi.org/10.3390/ph16111615

OMS - ORGANIZAÇÃO MUNDIAL DA SAÚDE. Global antimicrobial resistance and use surveillance systems | Country Profiles. [S. l.]: Global Health Observatory, 2019. Disponível em: https://www.who.int/data/gho/data/themes/topics/global-antimicrobial-resistance-surveillance-system-glass/glass-country-profiles. Acesso em: 18 set. 2024

OMS - ORGANIZAÇÃO MUNDIAL DE SAÚDE. Antimicrobial resistance: global report on surveillance. Geneva: World Health Organization, 2014. Disponível em: https://www.who.int/publications/i/item/9789241564748. Acesso em: 04 nov. 2024.

OMS - ORGANIZAÇÃO MUNDIAL DE SAÚDE. Bacterial Priority Pathogens List, 2024: Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. Geneva: World Health Organization; 2024. Disponível em: https://www.who.int/publications/i/item/9789240093461. Acesso em: 29 ago. 2024.

OMS - ORGANIZAÇÃO MUNDIAL DE SAÚDE. Incentivising the development of new antibacterial treatments 2023. [S. l.]: Global AMR R&D Hub & WHO, 2023. Disponível em: https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/amr-gcp-irc/incentivising-development-of-new-antibacterial-treatments-2023---progress-report.pdf?sfvrsn=72e4f738_3. Acesso em: 11 mai. 2024.

PARDO-FREIRE, M.; DOMINGO-CALAP, P. Phages and Nanotechnology: New Insights against Multidrug-Resistant Bacteria. Biodesingn Research, [S. l.], v.5, p. 1-13, jan, 2023. DOI: 10.34133/bdr.0004. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC10521656/. Acesso em: 16 dez. 2024. DOI: https://doi.org/10.34133/bdr.0004

PELFRENE, E. et al. Bacteriophage therapy: a regulatory perspective. Journal of Antimicrobial Chemotherapy, [S. l.], v. 71, n. 8, p. 2071-2074, ago.2016. DOI: https://doi.org/10.1093/jac/dkw083. Disponível em: https://academic.oup.com/jac/article/71/8/2071/2237822?login=false. Acesso em: 20 set. 2024. DOI: https://doi.org/10.1093/jac/dkw083

PIRNAY, J. et al. Personalized bacteriophage therapy outcomes for 100 consecutive cases: a multicentre, multinational, retrospective observational study. Nature Microbiology, [S. l.], v. 9, p. 1434-1453, jun. 2024. DOi: https://doi.org/10.1038/s41564-024-01705-x. Disponível em: https://www.nature.com/articles/s41564-024-01705-x. Acesso em: 20 set. 2024.

PIRNAY, J. Phage Therapy in the Year 2035. Frontiers Microbiology, [S. l.], v. 11, n. 1171, jun. 2020. DOI: 10.3389/fmicb.2020.01171. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284012/. Acesso em: 14 out. 2024. DOI: https://doi.org/10.3389/fmicb.2020.01171

RODRIGUEZ, J. M. et al. Case Report: successful use of phage therapy in refractory MRSA chronic rhinosinusitis. International Journal of Infectious Diseases, [S. l.], v. 121, p. 14-16, ago. 2022. DOI: 10.1016/j.ijid.2022.04.049. Disponível em: https://www.ijidonline.com/article/S1201-9712(22)00247-8/fulltext. Acesso em: 18 set. 2024. DOI: https://doi.org/10.1016/j.ijid.2022.04.049

RUBALSKII, E. et al. Bacteriophage Therapy for Critical Infections Related to Cardiothoracic Surgery. Antibiotics (Basel), [S. l.], v.9, n. 5:232, mai. 2020. DOI: 10.3390/antibiotics9050232. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7277081/. Acesso em: 28 ago. 2024. DOI: https://doi.org/10.3390/antibiotics9050232

SABINO, Y. N. V. et al. Characterization of antibiotic resistance genes in the species of the rumen microbiota. Nature Comumunications, [S. l.], v. 10, n. 5252, p. 1-11, nov. 2019. DOI: 10.1038/s41467-019-13118-0. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868206/. Acesso em: 01 mai. 2024. DOI: https://doi.org/10.1038/s41467-019-13118-0

SARKER, S. A. et al. Oral Phage Therapy of Acute Bacterial Diarrhea With Two Coliphage Preparations: A Randomized Trial in Children From Bangladesh. eBioMedicine, [S. l.], v. 4, p. 124-137, feb. 2016. DOI: 10.1016/j.ebiom.2015.12.023. Disponível em: https://pubmed.ncbi.nlm.nih.gov/26981577/. Acesso em: 20 set. 2024. DOI: https://doi.org/10.1016/j.ebiom.2015.12.023

SARKER, S. A. et al. Oral T4-like phage cocktail application to healthy adult volunteers from Bangladesh. Virology, [S. l.], v 434, n. 2, p. 222-232, jan. 2012. DOI: 10.1016/j.virol.2012.09.002. Disponível em: https://www.sciencedirect.com/science/article/pii/S0042682212004436?pes=vor. Acesso em: 20 set. 2024. DOI: https://doi.org/10.1016/j.virol.2012.09.002

SLOPEK, S. et al. Results of bacteriophage treatment of suppurative bacterial infections. III. Detailed evaluation of the results obtained in further 150 cases. Archivum Immunologiae et Therapiae Experimentalis (Warsz), [S. l.], v. 32, n. 3, p. 317-335, 1984. Disponível em: https://pubmed.ncbi.nlm.nih.gov/6395825/. Acesso em: 14 out. 2024.

SLOPEK, S. et al. Results of bacteriophage treatment of suppurative bacterial infections. IV. Evaluation of the results obtained in 370 cases Archivum Immunologiae et Therapiae Experimentalis (Warsz), [S. l.], v. 33, n. 2, p. 219-240, 1985. Disponível em: https://pubmed.ncbi.nlm.nih.gov/2935115/. Acesso em: 14 out. 2024.

SLOPEK, S. et al. Results of bacteriophage treatment of suppurative bacterial infections. V. Evaluation of the results obtained in children. Archivum Immunologiae et Therapiae Experimentalis (Warsz), [S. l.], v. 33, n. 2, p. 219-240, 1985. Disponível em: https://pubmed.ncbi.nlm.nih.gov/2935116/. Acesso em: 14 out. 2024.

SLOPEK, S. et al. Results of bacteriophage treatment of suppurative bacterial infections. VI. Analysis of treatment of suppurative staphylococcal infections. Archivum Immunologiae et Therapiae Experimentalis (Warsz), [S. l.], v. 33, n. 2, p. 261-273, 1985. Disponível em: https://pubmed.ncbi.nlm.nih.gov/2935117/. Acesso em: 14 out. 2024.

SMOLINSKI, M. S.; HAMBURG, M. A.; LEDERBERG, J. Microbial Threats to Health: Emergence, Detection, and Response. Washington: The National Academies Press, 2003. Disponível em: https://www.ncbi.nlm.nih.gov/books/NBK221483/#ddd00042. Acesso em: 28 fev. 2024.

STRATHDEE, S. A. et al. Phage therapy: From biological mechanisms to future directions. Cell, [S. l.], v. 186, n. 1, p. 17-31, jan. 2023. DOI: 10.1016/j.cell.2022.11.017. Disponível em: https://www.cell.com/cell/fulltext/S00928674(22)014611?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867422014611%3Fshowall%3Dtrue. Acesso em: 21 abr. 2024.

SUH, G. A. et al. Considerations for the Use of Phage Therapy in Clinical Practice. Antimicrobial Agents and Chemotheraphy, [S. l.], v. 66, n. 3, mar. 2022. DOI: 10.1128/AAC.02071-21. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8923208/. Acesso em: 20 set. 2024. DOI: https://doi.org/10.1128/aac.02071-21

SUTCLIFFE, S. G; REYES, A.; MAURICE, C. F. Bacteriophages playing nice: Lysogenic bacteriophage replication stable in the human gut microbiota. IScience, [S. l.], v. 26, n. 2, p. 1-14, fev. 2023. DOI: https://doi.org/10.1016/j.isci.2023.106007. Disponível em: https://www.cell.com/iscience/fulltext/S2589-0042(23)00084-6#%20. Acesso em: 11 maio 2024. DOI: https://doi.org/10.1016/j.isci.2023.106007

VIERTEL, T. M.; RITTER, K., HORZ, H. Viruses versus bacteria—novel approaches to phage therapy as a tool against multidrug-resistant pathogens. Journal of Antimicrobial Chemotherapy, [S. l.], v. 69, p. 2326-2336, mai. 2014. DOI: 10.1093/jac/dku173. Disponível em: https://academic.oup.com/jac/article/69/9/2326/2911275?login=false. Acesso em: 18 maio 2024. DOI: https://doi.org/10.1093/jac/dku173

WRIGHT, A. et al. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clinical Otolaryngology, [S. l.], v. 34, n. 4 p. 349-457, ago. 2009. DOI: 10.1111/j.1749-4486.2009.01973.x. Disponível em: https://onlinelibrary.wiley.com/doi/10.1111/j.1749-4486.2009.01973.x. Acesso em: 06 set. 2024. DOI: https://doi.org/10.1111/j.1749-4486.2009.01973.x

Published

22/02/2025

How to Cite

PHAGE THERAPY: AN INNOVATIVE APPROACH TO TREATING INFECTIONS CAUSED BY RESISTANT BACTERIA. (2025). RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 6(2), e626264. https://doi.org/10.47820/recima21.v6i2.6264