INDEPENDENT ETHANOL INJECTION SYSTEM IN COMPRESSION IGNITION ENGINES: SYSTEMATIC REVIEW
DOI:
https://doi.org/10.47820/recima21.v6i5.6417Keywords:
Diesel, Automotive technology, Electronic fuel injection, Internal combustion enginesAbstract
Electronic fuel injection has revolutionized internal combustion engines by upgrading carburetors and providing more precise control over the air and fuel mixture, which has improved efficiency, performance and emissions. The innovation of ethanol injection systems, which optimize the use of ethanol as a renewable fuel, also contributes to cleaner burning and lower emissions compared to fossil fuels. The work is aligned with the UN Sustainable Development Goals (SDGs), focusing on areas such as environmental sustainability, technological innovation and reducing gas emissions. The SDGs included include: SDG 7 (Affordable and Clean Energy), with the promotion of more sustainable fuels; SDG 9 (Industry, Innovation and Infrastructure), with technological advances in the automotive sector; SDG 11 (Sustainable Cities and Communities), with improving the quality of cities; SDG 12 (Responsible Consumption and Production), promoting sustainable practices; and SDG 13 (Action against Global Climate Change), with the mitigation of climate change through the use of ethanol, contributing to a more sustainable future.
Downloads
References
AGARWAL, A. K.; KUMAR, V.; JENA, A.; KALWAR, A. Fuel injection strategy optimization and experimental performance and emissions evaluation of diesel displacement by port fuel injected methanol in a retrofitted mid-size genset engine prototype. Energy, v. 248, p. 123593, 2022. https://doi.org/10.1016/j.energy.2022.123593. DOI: https://doi.org/10.1016/j.energy.2022.123593
ALTINKURT DENIZ, M.; MERTS, M.; TUNÉR, M.; TURKCAN, A. Effects of split diesel injection strategies on combustion, knocking, cyclic variations and emissions of a natural gas-diesel dual fuel medium speed engine. Fuel, v. 347, p. 128517, 2023. https://doi.org/10.1016/j.fuel.2023.128517. DOI: https://doi.org/10.1016/j.fuel.2023.128517
BARBOSA GALVÃO, M. C.; MARQUES RICARTE, I. L. Revisão sistemática da literatura: conceituação, produção e publicação. Logeion: Filosofia da Informação, v. 6, n. 1, p. 57–73, 2019. https://doi.org/10.21728/logeion.2019v6n1.p57-73. DOI: https://doi.org/10.21728/logeion.2019v6n1.p57-73
BISWAS, S.; KAKATI, D.; CHAKRABORTI, P.; BANERJEE, R. Assessing the potential of ethanol in the transition of biodiesel combustion to RCCI regimes under varying injection phasing strategies: A performance-emission-stability and tribological perspective. Fuel, v. 304, p. 121346, 2021. https://doi.org/10.1016/j.fuel.2021.121346. DOI: https://doi.org/10.1016/j.fuel.2021.121346
COSTA, R. B. R. DA; ROQUE, L. F. A.; DE SOUZA, T. A. Z.; CORONADO, C. J. R.; PINTO, G. M.; CINTRA, A. J. A.; RAATS, O. O.; OLIVEIRA, B. M.; FREZ, G. V.; DA SILVA, M. H. Experimental assessment of renewable diesel fuels (HVO/Farnesane) and bioethanol on dual-fuel mode. Energy Conversion and Management, v. 258, p. 115554, 2022. https://doi.org/10.1016/j.enconman.2022.115554. DOI: https://doi.org/10.1016/j.enconman.2022.115554
GANESAN, N.; VISWANATHAN, K.; KARTHIC, S. V.; EKAMBARAM, P.; WU, W.; VO, D.-V. N. Split injection strategies based RCCI combustion analysis with waste cooking oil biofuel and methanol in an open ECU assisted CRDI engine. Fuel, v. 319, p. 123710, 2022. https://doi.org/10.1016/j.fuel.2022.123710. DOI: https://doi.org/10.1016/j.fuel.2022.123710
GOMES, G. A injeção eletrônica e sua importância na redução de poluentes. Injesan, 10 jun. 2024. https://injesan.com.br/blog/blog-p/pecas-eletricas/a-injecao-eletronica-e-sua-importancia-na-reducao-de-poluentes.
GUAN, W.; WANG, X.; LIU, H.; ZHAO, H. Exploring the high load potential of diesel-methanol dual-fuel operation with Miller cycle, exhaust gas recirculation and intake air cooling on a heavy-duty diesel engine. International Journal of Engine Research, 2020. https://doi.org/10.1177/1468087420926775. DOI: https://doi.org/10.1177/1468087420926775
GÜLCAN, H. E.; CINIVIZ, M. The effect of pure methane energy fraction on combustion performance, energy analysis and environmental - economic cost indicators in a single-cylinder common rail methane-diesel dual fuel engine. Applied Thermal Engineering, v. 230, p. 120712, 2023. https://doi.org/10.1016/j.applthermaleng.2023.120712. DOI: https://doi.org/10.1016/j.applthermaleng.2023.120712
HUANG, G.; LI, Z.; ZHAO, W.; ZHANG, Y.; LI, J.; HE, Z.; QIAN, Y.; ZHU, L.; LU, X. Effects of fuel injection strategies on combustion and emissions of intelligent charge compression ignition (ICCI) mode fueled with methanol and biodiesel. Fuel, v. 274, p. 117851, 2020. https://doi.org/10.1016/j.fuel.2020.117851.
HUANG, H.; ZHU, Z.; CHEN, Y.; CHEN, Y.; LV, D.; ZHU, J.; OUYANG, T. Estudo experimental e numérico dos efeitos de injeção múltipla nas características de combustão e emissão de motores bicombustíveis a gás natural e diesel. Energy Conversion and Management, v. 183, p. 84-96, 2019. https://doi.org/10.1016/j.fuel.2020.117851. DOI: https://doi.org/10.1016/j.fuel.2020.117851
KARTHIC, S. V.; SENTHIL KUMAR, M.; NATARAJ, G.; PRADEEP, P. An assessment on injection pressure and timing to reduce emissions on diesel engine powered by renewable fuel. Journal of Cleaner Production, v. 255, p. 120186, 2020. https://doi.org/10.1016/j.jclepro.2020.120186. DOI: https://doi.org/10.1016/j.jclepro.2020.120186
KUMAR, M.; BHOWMIK, S.; PAUL, A. Effect of pilot fuel injection pressure and injection timing on combustion, performance and emission of hydrogen-biodiesel dual fuel engine. International Journal of Hydrogen Energy, v. 47, n. 68, p. 29554–29567, 2022. https://doi.org/10.1016/j.ijhydene.2022.06.260. DOI: https://doi.org/10.1016/j.ijhydene.2022.06.260
LAPES - LABORATÓRIO DE PESQUISA EM ENGENHARIA DE SOFTWARE. Tools. São Carlos, SP: Lapes, 2025. https://www.lapes.ufscar.br/resources/tools.
LI, Z.; MI, S.; ZHANG, Y.; QIAN, Y.; LU, X. Characterizing the role of fuel injection strategies on performance, combustion, and emissions in intelligent charge compression ignition (ICCI) mode. Applied Thermal Engineering, v. 207, p. 118169, 2022. https://doi.org/10.1016/j.applthermaleng.2022.118169. DOI: https://doi.org/10.1016/j.applthermaleng.2022.118169
LI, Z.; WANG, Y.; WANG, Y.; YIN, Z.; GAO, Z.; YE, Z.; ZHEN, X. Effects of fuel injection timings and methanol split ratio in M/D/M strategy on a diesel/methanol dual-fuel direct injection engine. Fuel, v. 325, p. 124970, 2022. https://doi.org/10.1016/j.fuel.2022.124970. DOI: https://doi.org/10.1016/j.fuel.2022.124970
LI, Z.; WANG, Y.; YIN, Z.; GAO, Z.; WANG, Y.; ZHEN, X. An exploratory numerical study of a diesel/methanol dual-fuel injector: Effects of nozzle number, nozzle diameter and spray spacial angle on a diesel/methanol dual-fuel direct injection engine. Fuel, v. 318, p. 123700, 2022. https://doi.org/10.1016/j.fuel.2022.123700. DOI: https://doi.org/10.1016/j.fuel.2022.123700
LI, Z.; WANG, Y.; YIN, Z.; GENG, H.; ZHU, R.; ZHEN, X. Effect of injection strategy on a diesel/methanol dual-fuel direct-injection engine. Applied Thermal Engineering, v. 189, p. 116691, 2021. https://doi.org/10.1016/j.applthermaleng.2021.116691. DOI: https://doi.org/10.1016/j.applthermaleng.2021.116691
LIU, J.; WU, P.; JI, Q.; SUN, P.; WANG, P.; MENG, Z.; MA, H. Experimental study on effects of pilot injection strategy on combustion and emission characteristics of diesel/methanol dual-fuel engine under low load. Energy, v. 247, p. 123464, 2022. https://doi.org/10.1016/j.energy.2022.123464. DOI: https://doi.org/10.1016/j.energy.2022.123464
LIU, J.; ZHAO, H.; WANG, J.; ZHANG, N. Optimization of the injection parameters of a diesel/natural gas dual fuel engine with multi-objective evolutionary algorithms. Applied Thermal Engineering, v. 150, p. 70–79, 2019. https://doi.org/10.1016/j.applthermaleng.2018.12.171. DOI: https://doi.org/10.1016/j.applthermaleng.2018.12.171
MADIHI, R.; POURFALLAH, M.; GHOLINIA, M.; ARMIN, M.; GHADI, A. Z. Thermofluids analysis of combustion, emissions, and energy in a biodiesel (C11H22O2) / natural gas heavy-duty engine with RCCI mode (Part II: Fuel injection time/ Fuel injection rate). International Journal of Thermofluids, v. 16, p. 100200, 2022. https://doi.org/10.1016/j.ijft.2022.100200. DOI: https://doi.org/10.1016/j.ijft.2022.100200
NING, L.; DUAN, Q.; KOU, H.; ZENG, K. Parametric study on effects of methanol injection timing and methanol substitution percentage on combustion and emissions of methanol/diesel dual-fuel direct injection engine at full load. Fuel, v. 279, p. 118424, 2020. https://doi.org/10.1016/j.fuel.2020.118424. DOI: https://doi.org/10.1016/j.fuel.2020.118424
OLIVEIRA PAUFERRO, M. T. Uso do etanol como combustível para motores diesel: uma discussão sobre a viabilidade. 2012. 53f. Monografia (MBA em Gestão Ambiental e Práticas de Sustentabilidade) - Instituto Mauá de Tecnologia, São Caetanos do Sil, SP, 2012. https://maua.br/files/monografias/uso-do-etanol-como-combustivel-para-motores-diesel-uma-discussao-sobre-a-viabilidade.pdf
OUCHIK, S.; LOUNICI, M. S.; LOUBAR, K.; TARABET, L.; TAZEROUT, M. Effect of diesel injection strategy on performance and emissions of CH₄/diesel dual-fuel engine. Fuel, v. 308, p. 121911, 2022. https://doi.org/10.1016/j.fuel.2021.121911. DOI: https://doi.org/10.1016/j.fuel.2021.121911
RAÍZEN. Etanol: o que é e como é usado no Brasil. Time de Produção de Etanol da Raízen. [S. l.]: Raízen, 2022. https://www.raizen.com.br/blog/etanol#:~:text=Al%C3%A9m%20de%20renov%C3%A1vel%2C%20o%20etanol,)%2C%20quando%20comparado%20%C3%A0%20gasolina.
SUN, W.; JIANG, M.; GUO, L.; ZHANG, H.; JIA, Z.; QIN, Z.; ZENG, W. et al. Numerical study of injection strategies for marine methanol/diesel direct dual fuel stratification engine. Journal of Cleaner Production, v. 421, p. 138505, 2023. https://doi.org/10.1016/j.jclepro.2023.138505. DOI: https://doi.org/10.1016/j.jclepro.2023.138505
TAO, W.; SUN, T.; GUO, W.; LU, K.; SHI, L.; LIN, H. The effect of diesel pilot injection strategy on combustion and emission characteristic of diesel/methanol dual fuel engine. Fuel, v. 324, p. 124653, 2022. https://doi.org/10.1016/j.fuel.2022.124653. DOI: https://doi.org/10.1016/j.fuel.2022.124653
TRIPATHI, G.; SHARMA, P.; DHAR, A. Computational study of diesel injection strategies for methane-diesel dual fuel engine. Cleaner Engineering and Technology, v. 6, p. 100393, 2022. https://doi.org/10.1016/j.clet.2021.100393. DOI: https://doi.org/10.1016/j.clet.2021.100393
UNESP – FCA. Tipos de revisão de literatura. São Paulo: UNESP, 2015. p. 1–9. https://www.fca.unesp.br/Home/Biblioteca/tipos-de-evisao-de-literatura.pdf.
VALERA, H.; KUMAR, D.; AGARWAL, A. K. Evaluating the effect of variable methanol injection timings in a novel co-axial fuel injection system equipped locomotive engine. Journal of Cleaner Production, v. 349, p. 131452, 2022. https://doi.org/10.1016/j.jclepro.2022.131452. DOI: https://doi.org/10.1016/j.jclepro.2022.131452
WEN, H.; YU, Y.; LI, J.; XU, C.; JING, H.; SHEN, J. Numerical investigation on the influence of injection location and injection strategy on a high-pressure direct injection diesel/methanol dual-fuel engine. Energies, v. 16, n. 11, p. 4518, 2023. https://doi.org/10.3390/en16114518. DOI: https://doi.org/10.3390/en16114518
XU, C.; ZHUANG, Y.; QIAN, Y.; CHO, H. Effect on the performance and emissions of methanol/diesel dual-fuel engine with different methanol injection positions. Fuel, v. 307, p. 121868, 2022. https://doi.org/10.1016/j.fuel.2021.121868. DOI: https://doi.org/10.1016/j.fuel.2021.121868
YANG, T.; CHEN, D.; LIU, L.; ZHANG, L.; WANG, A.; LI, G.; CHEN, H.; CHEN, Y. Efeito da estratégia de injeção piloto no desempenho do motor diesel sob modo de combustão dupla etanol/FT diesel. Processes, v. 347, 2023. https://doi.org/10.3390/pr11071919. DOI: https://doi.org/10.3390/pr11071919
YANG, W.; WANG, Y.; BAI, Y.; HAO, L.; LIU, X. Experimental study of the bioethanol substitution rate and the diesel injection strategies on combustion and emission characteristics of dual-fuel-direct-injection (DFDI) engines. Journal of the Energy Institute, v. 106, p. 101153, 2023. https://doi.org/10.1016/j.joei.2022.101153. DOI: https://doi.org/10.1016/j.joei.2022.101153
YIN, X.; LI, W.; DUAN, H.; DUAN, Q.; KOU, H.; WANG, Y.; YANG, B.; ZENG, K. A comparative study on operating range and combustion characteristics of methanol/diesel dual direct injection engines with different methanol injection timings. Fuel, v. 334, p. 126646, 2023. https://doi.org/10.1016/j.fuel.2022.126646. DOI: https://doi.org/10.1016/j.fuel.2022.126646
YIN, X.; XU, L.; DUAN, H.; WANG, Y.; WANG, X.; ZENG, K.; WANG, Y. In-depth comparison of methanol port and direct injection strategies in a methanol/diesel dual fuel engine. Fuel Processing Technology, v. 241, p. 107607, 2023. https://doi.org/10.1016/j.fuproc.2022.107607. DOI: https://doi.org/10.1016/j.fuproc.2022.107607
YIN, X.; YUE, G.; LIU, J.; DUAN, H.; DUAN, Q.; KOU, H.; WANG, Y.; YANG, B.; ZENG, K. Investigation into the operating range of a dual-direct injection engine fueled with methanol and diesel. Energy, v. 267, p. 126625, 2023. https://doi.org/10.1016/j.energy.2023.126625. DOI: https://doi.org/10.1016/j.energy.2023.126625
YOU, J.; LIU, Z.; WANG, Z.; WANG, D.; XU, Y. Impact of natural gas injection strategies on combustion and emissions of a dual fuel natural gas engine ignited with diesel at low loads. Fuel, v. 260, p. 116414, 2020. https://doi.org/10.1016/j.fuel.2019.116414 DOI: https://doi.org/10.1016/j.fuel.2019.116414
YOUSEFI, A.; GUO, H.; BIROUK, M. Effect of diesel injection timing on the combustion of natural gas/diesel dual-fuel engine at low-high load and low-high speed conditions. Fuel, v. 235, p. 838–846, 2019. https://doi.org/10.1016/j.fuel.2018.08.064. DOI: https://doi.org/10.1016/j.fuel.2018.08.064
YOUSEFI, A.; GUO, H.; BIROUK, M.; LIKO, B.; LAFRANCE, S. Effect of post-injection strategy on greenhouse gas emissions of natural gas/diesel dual-fuel engines at high load conditions. Fuel, v. 290, p. 120071, 2021a. https://doi.org/10.1016/j.fuel.2020.120071. DOI: https://doi.org/10.1016/j.fuel.2020.120071
YOUSEFI, A.; GUO, H.; DEV, S.; LAFRANCE, S.; LIKO, B. A study on split diesel injection on thermal efficiency and emissions of an ammonia/diesel dual-fuel engine. Fuel, v. 316, p. 123412, 2022. https://doi.org/10.1016/j.fuel.2022.123412. DOI: https://doi.org/10.1016/j.fuel.2022.123412
YOUSEFI, A.; GUO, H.; DEV, S.; LIKO, B.; LAFRANCE, S. Effect of pre-main-post diesel injection strategy on greenhouse gas and nitrogen oxide emissions of natural gas/diesel dual-fuel engine at high load conditions. Fuel, v. 302, p. 121110, 2021b. https://doi.org/10.1016/j.fuel.2021.121110. DOI: https://doi.org/10.1016/j.fuel.2021.121110
ZHOU, H.; ZHAO, H.-W.; HUANG, Y.-P.; WEI, J.-H.; PENG, Y.-H. Effects of injection timing on combustion and emission performance of dual-fuel diesel engines under low to medium load conditions. Energies, v. 12, n. 12, p. 2349, 2019. https://doi.org/10.3390/en12122349. DOI: https://doi.org/10.3390/en12122349
Downloads
Published
License
Copyright (c) 2025 RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218

This work is licensed under a Creative Commons Attribution 4.0 International License.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECIMA21, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECIMA21 apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.