PCOS PREDICTION USING MACHINE LEARNING TECHNIQUES: A COMPARATIVE ANALYSIS OF MODELS AND PRACTICAL APPLICATION

Authors

DOI:

https://doi.org/10.47820/recima21.v6i6.6546

Keywords:

Polycystic Ovary Syndrome. Reproductive Health. Machine Learning. Classification Algorithms.

Abstract

Polycystic Ovary Syndrome (PCOS) is an endocrine disorder that affects women of reproductive age, and it is challenging to diagnose due to its clinical heterogeneity and symptom overlap with other conditions. The following study aims to investigate the use of Machine Learning (ML) techniques to enhance the diagnostic accuracy of PCOS, using a public dataset and comparing the classifiers Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Decision Tree (DT), and Random Forest (RF). Additionally, feature selection and data balancing techniques are applied to optimize the models. Finally, SOP ASSIST is proposed, an API that provides the patient's diagnostic result, considering the best trained model.

Downloads

Download data is not yet available.

Author Biographies

  • Luiz Fernando da Cunha Silva

    Universidade Federal Rural do Semi-Árido (UFERSA).

  • Wesley dos Santos Silva

    Universidade Federal Rural do Semi-Árido - UFERSA.

  • Samara Martins Nascimento Gonçalves

    Universidade Federal Rural do Semi-Árido - UFERSA.

  • Verônica Maria Lima Silva

    Universidade Federal da Paraíba - UFPB.

References

BÜYÜKKEÇECI, M.; OKUR, M. C. A comprehensive review of feature selection and feature selection stability in machine learning. Gazi University Journal of Science, [s. l.], v. 36, n. 4, p. 1506-1520, Dec. 2023. Disponível em: https://doi.org/10.35378/gujs.993763. Acesso em: 23 jan. 2025. DOI: https://doi.org/10.35378/gujs.993763

CHAWLA, N. V.; BOWYER, K. W.; HALL, L. O.; KEGELMEYER, W. P. SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, [s. l.], v. 16, p. 321–357, June. 2002. Disponível em: https://doi.org/10.1613/jair.953. Acesso em: 20 jan. 2025. DOI: https://doi.org/10.1613/jair.953

CHE, Y.; YU, J.; LI, Y. S.; ZHU, Y.; TAO, T. Polycystic Ovary Syndrome: Challenges and Possible Solutions. Journal of Clinical Medicine, [s. l.], v. 12, n. 4, p. 1500, Feb. 2023. Disponível em: https://pmc.ncbi.nlm.nih.gov/articles/PMC9967025/. Acesso em: 8 fev. 2025. DOI: https://doi.org/10.3390/jcm12041500

GÉRON, A. Mãos à Obra: Aprendizado de Máquina com Scikit-Learn, Keras e TensorFlow. 2. ed. atual. Rio de Janeiro: Alta Books, 2021. 614 p. ISBN 9788550815480.

NASIM, S.; ALMUTAIRI, M. S.; MUNIR, K.; RAZA, A.; YOUNAS, F. A novel approach for polycystic ovary syndrome prediction using machine learning in bioinformatics. IEEE Access, [s. l.], v. 10, p. 97610-97624, 2022. Disponível em: https://ieeexplore.ieee.org/document/9885199. Acesso em: 25 jan. 2025. DOI: https://doi.org/10.1109/ACCESS.2022.3205587

RANGEL, F. R.; LOPES, C. C. A.; REZENDE, M. C. B.; SALES, C. B.; MAGALHÃES, A. C. T. Síndrome dos Ovários Policísticos: Revisão Sistemática da Etiologia, Fisiopatologia, Diagnóstico e Tratamento. Brazilian Journal of Implantology and Health Sciences, [s. l.], v. 6, n. 8, p. 5403–541, ago. 2024. Disponível em: https://doi.org/10.36557/2674-8169.2024v6n8p5403-5412. Acesso em: 8 fev. 2025. DOI: https://doi.org/10.36557/2674-8169.2024v6n8p5403-5412

SILVA, T. dos S.; OLIVEIRA, M. D. P. de; BRASIL, L. G. O impacto da Síndrome do Ovário Policístico na vida das mulheres. Brazilian Journal of Health Review, [s. l.], v. 7, n. 5, p. e72576, maio. 2024. Disponível em: https://ojs.brazilianjournals.com.br/ojs/index.php/BJHR/article/view/72576. Acesso em: 8 fev. 2025. DOI: https://doi.org/10.34119/bjhrv7n5-075

SREEJITH, S.; KHANNA NEHEMIAH, H.; KANNAN, A. A clinical decision support system for polycystic ovarian syndrome using red deer algorithm and random forest classifier. Healthcare Analytics, [s. l.], v. 2, p. 100102, 2022. Disponível em: https://doi.org/10.1016/j.health.2022.100102. Acesso em: 8 fev. 2025. DOI: https://doi.org/10.1016/j.health.2022.100102

SUHA, S. A.; ISLAM, M. N. Exploring the dominant features and data-driven detection of polycystic ovary syndrome through modified stacking ensemble machine learning technique. Heliyon, [s. l.], v. 9, n. 3, p. e14518, Mar. 2023. Disponível em: https://www.sciencedirect.com/science/article/pii/S2405844023017255. Acesso em: 25 jan. 2025. DOI: https://doi.org/10.1016/j.heliyon.2023.e14518

SWAMY, S. R.; KS, N. P. Hybrid Machine Learning Model for Early Discovery and Prediction of Polycystic Ovary Syndrome. In: INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES IN INTELLIGENT CONTROL, ENVIRONMENT, COMPUTING & COMMUNICATION ENGINEERING (ICATIECE), 2., 2022, Bangalore, India. Anais eletrônicos [...]. Bangalore: IEEE, 2022. p. 1-8. Disponível em: https://www.proceedings.com/67995.html. Acesso em: 27 jan. 2025 DOI: https://doi.org/10.1109/ICATIECE56365.2022.10047488

TIWARI, S.; KANE, L.; KOUNDAL, D.; JAIN, A.; ALHUDHAIF, A.; POLAT, K.; ZAGUIA, A.; ALENEZI, F.; ALTHUBITI, S. A. SPOSDS: A smart Polycystic Ovary Syndrome diagnostic system using machine learning. Expert Systems with Applications, [s. l.], v. 203, p. 117592, 2022. Disponível em: https://www.sciencedirect.com/science/article/pii/S0957417422009046. Acesso em: 30 jan. 2025. DOI: https://doi.org/10.1016/j.eswa.2022.117592

Published

17/06/2025

How to Cite

PCOS PREDICTION USING MACHINE LEARNING TECHNIQUES: A COMPARATIVE ANALYSIS OF MODELS AND PRACTICAL APPLICATION. (2025). RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 6(6), e666546. https://doi.org/10.47820/recima21.v6i6.6546