ALGORITMOS DE APRENDIZAJE AUTOMÁTICO EN LA AGRICULTURA: UNA REVISIÓN DE LA LITERATURA SOBRE PREDICCIÓN CLIMÁTICA Y DE PRECIOS, DETECCIÓN DE PLAGAS Y ENFERMEDADES Y MONITOREO DE PRODUCCIÓN
DOI:
https://doi.org/10.47820/recima21.v6i2.6211Palabras clave:
Algoritmo, Agricultura, Bosque aleatorio, Aprendizaje automático, Sequía, Previsión, IAResumen
La demanda de alimentos está creciendo cada año y exige aplicaciones tecnológicas más significativas en el campo. Además, debido a la producción de alimentos, las plagas y los incidentes relacionados con el cambio climático representan un desafío en tiempo real para los agricultores. Ante la creciente necesidad de aplicar algoritmos en el campo, investigamos los algoritmos más citados, utilizados y proyectos en curso en los últimos tres años, de 2019 a 2021. Por lo tanto, evaluamos artículos cuyo enfoque principal fue en algoritmos de aprendizaje supervisado. Esta revisión de literatura presenta una visión general del uso de algoritmos en la agricultura. Se analizaron un total de 81 artículos. Nuestras contribuciones incluyen: a) un análisis del estado del arte en la aplicación de algoritmos a diversas funciones agrícolas y b) una taxonomía para ayudar a investigadores, gobiernos y agricultores a elegir estos algoritmos. Este artículo aporta descubrimientos sobre la aplicación de algoritmos en cultivos, maquinaria y procesos, además de señalar nuevas líneas de investigación.
Descargas
Referencias
ABBAS, F.; AFZAAL, H.; FAROOQUE, A. A.; TANG, S. Crop yield prediction through proximal sensing and machine learning algorithms. Agronomy, v. 10, n. 7, 2020. DOI: https://doi.org/10.3390/agronomy10071046. DOI: https://doi.org/10.3390/agronomy10071046
ABDELLAH, N. A. A.; THANGADURAI, N. Real time application of iot for the agriculture in the field along with machine learning algorithm. In: International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), 2021. p. 1–6. DOI:10.1109/ICCCEEE49695.2021.9429606. DOI: https://doi.org/10.1109/ICCCEEE49695.2021.9429606
ACHARYA, U.; DAIGH, A. L. M.; ODUOR, P. G. Machine learning for predicting field soil moisture using soil, crop, and nearby weather station data in the red river valley of the north. Soil Systems, v. 5, n. 4, 2021. DOI: https://doi.org/10.3390/soilsystems5040057. DOI: https://doi.org/10.3390/soilsystems5040057
ADEBIYI, M. O.; OGUNDOKUN, R. O.; ABOKHAI, A. A. Machine learning– based predictive farmland optimization and crop monitoring system. Scientifica, 2020. DOI: 10.1155/2020/9428281. DOI: https://doi.org/10.1155/2020/9428281
AGRAWAL, A.; PATEL, M.; SHARMA, A. K. Novel supervised machine learning classification technique for improve accuracy of multi-valued datasets in agriculture. In: 6th International Conference on Inventive Computation Technologies (ICICT), 2021. p. 1067–1070. DOI:10.1109/ICICT50816.2021.9358691. DOI: https://doi.org/10.1109/ICICT50816.2021.9358691
AHISH, N.; SHASHIKALA, K.; BHARARTH, N. Automated modular data analysis and visualization system with predictive analytics using machine learning for agriculture field. International Journal of Research in Science, v. 5, n. 1, p. 1–3, 2019. DOI:10.24178/ijrs.2019.5.1.01. DOI: https://doi.org/10.24178/ijrs.2019.5.1.01
ANEECE, I.; THENKABAIL, P. S. Classifying crop types using two generations of hyperspectral sensors (hyperion and desis) with machine learning on the cloud. Remote Sensing, v. 13, n. 22, 2021. DOI: https://doi.org/10.3390/rs13224704. DOI: https://doi.org/10.3390/rs13224704
BALAKRISHNA, K.; MOHAMMED, F.; ULLAS, C.; HEMA, C.; SONAKSHI, S. Application of iot and machine learning in crop protection against animal intrusion. Global Transitions Proceedings, v. 2, n. 2, p. 169–174, 2021. International Conference on Computing System and its Applications (ICCSA- 2021). DOI: https://doi.org/10.1016/j.gltp.2021.08.061. DOI: https://doi.org/10.1016/j.gltp.2021.08.061
BALNE, S. Smart agriculture using advanced machine learning algorithms. International Journal of Innovative Research in Science, Engineering and Technology, v. 9, n. 7, p. 6836-6840, July 2020.
BANERJEE, B. P.; SHARMA, V.; SPANGENBERG, G.; KANT, S. Machine learning regression analysis for estimation of crop emergence using multispectral uav imagery. Remote Sensing, v. 13, n. 15, 2021, DOI: https://doi.org/10.3390/rs13152918. DOI: https://doi.org/10.3390/rs13152918
BARNES, M. L.; YODER, L.; KHODAEE, M. Detecting winter cover crops and crop residues in the midwest us using machine learning classification of thermal and optical imagery. Remote Sensing, v. 13, n. 10, 2021. DOI: https://doi.org/10.3390/rs13101998. DOI: https://doi.org/10.3390/rs13101998
BECK, M. A.; LIU, C.-Y.; BIDINOSTI, C. P.; HENRY, C. J.; GODEE, C. M.; AJMANI, M. An embedded system for the automated generation of labeled plant images to enable machine learning applications in agriculture. PLOS ONE, v. 15, n. 12, p. 1–23, 2020. DOI: https://doi.org/10.1371/journal.pone.0243923. DOI: https://doi.org/10.1371/journal.pone.0243923
BHIMANPALLEWAR, R. N.; NARASINGARAO, M. R. Alternative approaches of machine learning for agriculture advisory system. In: 10th International Conference on Cloud Computing, Data Science Engineering (Confluence), 2020. p. 27–31, DOI: DOI:10.1109/Confluence47617.2020.9058152. DOI: https://doi.org/10.1109/Confluence47617.2020.9058152
BUDGEN, D.; BRERETON, P. Performing systematic literature reviews in software engineering. In: Proceedings of the 28th International Conference on Software Engineering, ICSE ’06. 2006. p. 1051–1052, New York, NY, USA. Association for Computing Machinery, DOI: https://doi.org/10.1145/1134285.1134500. DOI: https://doi.org/10.1145/1134285.1134500
CHATERJI, S.; DELAY, N.; EVANS, J.; MOSIER, N.; ENGEL, B.; BUCKMASTER, D.; LADISCH, M. R.; CHANDRA, R. Lattice: A vision for machine learning, data engineering, and policy considerations for digital agriculture at scale. IEEE Open Journal of the Computer Society, v. 2, p. 227–240, 2021. DOI: DOI 10.1109/OJCS.2021.3085846. DOI: https://doi.org/10.1109/OJCS.2021.3085846
CHEN, Z.; GOH, H. S.; SIN, K. L.; LIM, K.; KA, N.; CHUNG, H.; LIEW, X. Y. Automated Agriculture Commodity Price Prediction System with Machine Learning Techniques. Advances in Science, Technology and Engineering Systems Journal, v. 6, n. 4, p. 376–384, 2021. DOI: https://doi.org/10.48550/arXiv.2106.12747. DOI: https://doi.org/10.25046/aj060442
CHINNAIYAN, R.; BALACHANDAR, S. Reliable administration framework of drones and iot sensors in agriculture farmstead using blockchain and smart contracts. In: Proceedings of the 2020 2nd International Conference on Big Data Engineering and Technology, BDET. 2020. p. 106–111, New York, NY, USA. Association for Computing Machinery, DOI: https://doi.org/10.1145/3378904.3378918. DOI: https://doi.org/10.1145/3378904.3378918
CRISOSTOMO DE CASTRO FILHO, H.; ABÍLIO DE CARVALHO JUNIOR, O.; FERREIRA DE CARVALHO, O. L.; POZZOBON DE BEM, P.; DOS SANTOS DE MOURA, R.; OLINO DE ALBUQUERQUE, A.; ROSA SILVA, C.; GUIMARAES FERREIRA, P. H.; FONTES GUIMARÃES, R.; TRANCOSO GOMES, R. A. Rice crop detection using lstm, bi-lstm, and machine learning models from sentinel-1 time series. Remote Sensing, v. 12, n. 16, 2020. DOI: https://doi.org/10.3390/rs12162655. DOI: https://doi.org/10.3390/rs12162655
DANNER, M.; BERGER, K.; WOCHER, M.; MAUSER, W.; HANK, T. Efficient RTM-based training of machine learning regression algorithms to quantify biophysical biochemical traits of agricultural crops. ISPRS Journal of Photogrammetry and Remote Sensing, v. 173, n. 278–296, 2021. DOI: https://doi.org/10.1016/j.isprsjprs.2021.01.017. DOI: https://doi.org/10.1016/j.isprsjprs.2021.01.017
DASH, R.; DASH, D. K.; AND BISWAL, G. Classification of crop based on macronutrients and weather data using machine learning techniques. Results in Engineering, v. 9, p. 100203, 2021. DOI: DOI:10.1016/j.rineng.2021.100203. DOI: https://doi.org/10.1016/j.rineng.2021.100203
DING, Y.; ZHANG, H.; WANG, Z.; XIE, Q.; WANG, Y.; LIU, L.; HALL, C. C. A comparison of estimating crop residue cover from sentinel-2 data using empirical regressions and machine learning methods. Remote Sensing, v. 12, n. 9, 2020. DOI: https://doi.org/10.3390/rs12091470. DOI: https://doi.org/10.3390/rs12091470
DUBOIS, A.; TEYTAUD, F.; VEREL, S. Short term soil moisture forecasts for potato crop farming: A machine learning approach. Computers and Electronics in Agriculture, v. 180, p. 105902, 2021. DOI: DOI: 10.1016/j.compag.2020.105902. DOI: https://doi.org/10.1016/j.compag.2020.105902
FENG, P.; WANG, B.; LIU, D. L.; YU, Q. Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in south-eastern australia. Agricultural Systems, v. 173, p. 303–316, 2019. DOI: 10.1016/j.agsy.2019.03.015. DOI: https://doi.org/10.1016/j.agsy.2019.03.015
FENU, G.; MALLOCI, F. M. An application of machine learning technique in forecasting crop disease. In Proceedings of the 2019 3rd International Conference on Big Data Research, ICBDR 2019. p. 76–82, New York, NY, USA. Association for Computing Machinery, DOI: https://doi.org/10.1145/3372454.3372474. DOI: https://doi.org/10.1145/3372454.3372474
FEYISA, G. L.; PALAO, L. K.; NELSON, A.; GUMMA, M. K.; PALIWAL, A.; WIN, K. T.; NGE, K. H.; JOHNSON, D. E. Characterizing and mapping cropping patterns in a complex agro-ecosystem: An iterative participatory mapping procedure using machine learning algorithms and modis vegetation indices. Computers and Electronics in Agriculture, v. 175, p. 105595, 2020. DOI: https://doi.org/10.1016/j.compag.2020.105595. DOI: https://doi.org/10.1016/j.compag.2020.105595
FOLBERTH, C.; BAKLANOV, A.; BALKOVIC, J.; SKALSKˇ Y, R.; KHABAROV, N.; OBERSTEINER, M. Spatio-temporal downscaling of gridded crop model yield estimates based on machine learning. Agricultural and Forest Meteorology, v. 264, p. 1–15, 2019. DOI: https://doi.org/10.1016/j.agrformet.2018.09.021. DOI: https://doi.org/10.1016/j.agrformet.2018.09.021
GARG, S.; PUNDIR, P.; JINDAL, H.; SAINI, H.; GARG, S. Towards a multimodal system for precision agriculture using iot and machine learning. Computer Science, 2021. DOI: DOI:10.48550/arXiv.2107.04895. DOI: https://doi.org/10.1109/ICCCNT51525.2021.9579646
GONG, D.; HAO, W.; GAO, L.; FENG, Y.; CUI, N. Extreme learning machine for reference crop evapotranspiration estimation: Model optimization and spatiotemporal assessment across different climates in china. Computers and Electronics in Agriculture, v. 187, p. 106294, 2021. DOI: 10.1016/j.compag.2021.106294. DOI: https://doi.org/10.1016/j.compag.2021.106294
GUMMA, M. K.; THENKABAIL, P. S.; TELUGUNTLA, P. G.; OLIPHANT, A.; XIONG, J.; GIRI, C.; PYLA, V.; DIXIT, S.; WHITBREAD, A. M. Agricultural cropland extent and areas of south asia derived using landsat satellite 30-m time-series big-data using random forest machine learning algorithms on the google earth engine cloud. GIScience & Remote Sensing, v. 57, n. 3, p. 302–322, 2020. DOI: https://doi.org/10.1080/15481603.2019.1690780. DOI: https://doi.org/10.1080/15481603.2019.1690780
HU, B.; XUE, J.; ZHOU, Y.; SHAO, S.; FU, Z.; LI, Y.; CHEN, S.; QI, L.; SHI, Z. Modelling bioaccumulation of heavy metals in soil-crop ecosystems and identifying its controlling factors using machine learning. Environmental Pollution, v. 262, p. 114308, 2020. DOI: https://doi.org/10.1016/j.envpol.2020.114308. DOI: https://doi.org/10.1016/j.envpol.2020.114308
IATROU, M.; KARYDAS, C.; IATROU, G.; PITSIORLAS, I.; ASCHONITIS, V.; RAPTIS, I.; MPETAS, S.; KRAVVAS, K.; MOURELATOS, S. Topdressing nitrogen demand prediction in rice crop using machine learning systems. Agriculture, v. 11, n. 4, 2021. DOI: https://doi.org/10.3390/agriculture11040312. DOI: https://doi.org/10.3390/agriculture11040312
JAGTAP, S. T.; PHASINAM, K.; KASSANUK, T.; JHA, S. S.; GHOSH, T.; THAKAR, C. M. Towards application of various machine learning techniques in agriculture. Materials Today: Proceedings, 2021. DOI:10.1016/j.matpr.2021.06.236. DOI: https://doi.org/10.1016/j.matpr.2021.06.236
JU, S.; LIM, H.; MA, J. W.; KIM, S.; LEE, K.; ZHAO, S.; HEO, J. Optimal county-level crop yield prediction using modis-based variables and weather data: A comparative study on machine learning models. Agricultural and Forest Meteorology, v. 307, p. 108530, 2021. DOI: 10.1016/j.agrformet.2021.108530. DOI: https://doi.org/10.1016/j.agrformet.2021.108530
KASINATHAN, T.; SINGARAJU, D.; UYYALA, S. R. Insect classification and detection in field crops using modern machine learning techniques. Information Processing in Agriculture, v. 8, n. 3, p. 446–457, 2021. DOI: https://doi.org/10.1016/j.inpa.2020.09.006. DOI: https://doi.org/10.1016/j.inpa.2020.09.006
KETCHUM, D.; JENCSO, K.; MANETA, M. P.; MELTON, F.; JONES, M. O.; HUNTINGTON, J. Irrmapper: A machine learning approach for high resolution mapping of irrigated agriculture across the western u.s. Remote Sensing, v. 12, n. 14, 2020. DOI: https://doi.org/10.3390/rs12142328. DOI: https://doi.org/10.3390/rs12142328
KGANYAGO, M.; MHANGARA, P.; ADJORLOLO, C. Estimating crop biophysical parameters using machine learning algorithms and sentinel-2 imagery. Remote Sensing, v. 13, n. 21, 2021. DOI: https://doi.org/10.3390/rs13214314. DOI: https://doi.org/10.3390/rs13214314
KWAK, G.-H.; PARK, N.-W. Impact of texture information on crop classification with machine learning and UAV images. Applied Sciences, v. 9, n. 4, 2021. DOI: https://doi.org/10.3390/app9040643. DOI: https://doi.org/10.3390/app9040643
LI, Z.; ZHANG, Z.; ZHANG, L. Improving regional wheat drought risk assessment for insurance application by integrating scenario-driven crop model, machine learning, and satellite data. Agricultural Systems, V. 191, p. 103141, 2021. DOI: https://doi.org/10.1016/j.agsy.2021.103141. DOI: https://doi.org/10.1016/j.agsy.2021.103141
LIU, L.; ZHAN, X. Analysis of financing efficiency of chinese agricultural listed companies based on machine learning. Complexity, v. 2019, p. 9190273, 2019. DOI: https://doi.org/10.1155/2019/9190273. DOI: https://doi.org/10.1155/2019/9190273
MAIMAITIJIANG, M.; SAGAN, V.; SIDIKE, P.; DALOYE, A. M.; ERKBOL, H.; FRITSCHI, F. B. (2020). Crop monitoring using satellite/UAV data fusion and machine learning. Remote Sensing, v. 12, n. 9, 2019, DOI: https://doi.org/10.3390/rs12091357. DOI: https://doi.org/10.3390/rs12091357
MANRIQUE-SILUPU, J.; CAMPOS, J. C.; PAIVA, E.; IPANAQUE, W. Thrips incidence prediction in organic banana crop with machine learning. Heliyon, p. e08575, 2021. http://dx.doi.org/10.1016/j.heliyon.2021.e08575. DOI: https://doi.org/10.1016/j.heliyon.2021.e08575
MAPONYA, M. G.; VAN NIEKERK, A.; MASHIMBYE, Z. E. Pre-harvest classification of crop types using a sentinel-2 time-series and machine learning. Computers and Electronics in Agriculture, v. 169, p. 105164, 2020. http://dx.doi.org/10.1016/j.compag.2019.105164. DOI: https://doi.org/10.1016/j.compag.2019.105164
MATEO-SANCHIS, A.; PILES, M.; AMOROS-L´ OPEZ, J.; MU´ NOZ-MAR˜ ´I, J.; ADSUARA, J. E.; MORENO-MART´INEZ, Alvaro; CAMPS-VALLS, G. Learning main drivers of crop progress and failure in europe with interpretable machine learning. International Journal of Applied Earth Observation and Geoinformation, v. 104, p. 102574, 2021. DOI: https://doi.org/10.1016/j.jag.2021.102574. DOI: https://doi.org/10.1016/j.jag.2021.102574
MAZZIA, V.; COMBA, L.; KHALIQ, A.; CHIABERGE, M.; GAY, P. UAV and machine learning based refinement of a satellite-driven vegetation index for precision agriculture. Sensors, v. 20, n. 9, 2020. DOI: https://doi.org/10.3390/s20092530. DOI: https://doi.org/10.3390/s20092530
MIAN, P.; CONTE, T.; NATALI, A.; BIOLCHINI, J.; TRAVASSOS, G. A systematic review process to software engineering - technical report rt-es 679/05. [S. l.: s. n.], 2005.
MOMM, H. G.; ELKADIRI, R.; PORTER, W. Crop-type classification for longterm modeling: An integrated remote sensing and machine learning approach. Remote Sensing, v. 12, n. 3, 2020. DOI: https://doi.org/10.3390/rs12030449. DOI: https://doi.org/10.3390/rs12030449
MOUHSSINE, R.; OTMAN, A.; KHATIR HAIMOUDI, E. Performance analysis of machine learning techniques for smart agriculture: Comparison of supervised classification approaches. International Journal of Advanced Computer Science and Applications, v. 11, n. 3, 2020. DOI: https://dx.doi.org/10.14569/IJACSA.2020.0110377. DOI: https://doi.org/10.14569/IJACSA.2020.0110377
MOUMNI, A.; LAHROUNI, A. Machine learning-based classification for croptype mapping using the fusion of high-resolution satellite imagery in a semiarid area. Scientifica, v. 2021, p. 8810279, 2021. DOI: https://doi.org/10.1155/2021/8810279. DOI: https://doi.org/10.1155/2021/8810279
MUNIASAMY, A. Machine learning for smart farming: A focus on desert agriculture. In: International Conference on Computing and Information Technology (ICCIT-1441), 2020. p. 1–5, DOI: 10.1109/ICCIT-144147971.2020.9213759. DOI: https://doi.org/10.1109/ICCIT-144147971.2020.9213759
MUTHONI, F.; THIERFELDER, C.; MUDERERI, B.; MANDA, J.; BEKUNDA, M.; HOESCHLEZELEDON, I. Machine learning model accurately predict maize grain yields in conservation agriculture systems in southern africa. In: 9th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), 2021. p. 1–5, DOI: http://dx.doi.org/10.1109/Agro-Geoinformatics50104.2021.9530335. DOI: https://doi.org/10.1109/Agro-Geoinformatics50104.2021.9530335
NAJAFI, P.; FEIZIZADEH, B.; NAVID, H. A comparative approach of fuzzy object based image analysis and machine learning techniques which are applied to crop residue cover mapping by using sentinel-2 satellite and uav imagery. Remote Sensing, v. 13, n. 5, 2021. DOI: https://doi.org/10.3390/rs13050937. DOI: https://doi.org/10.3390/rs13050937
PANT, J.; PANT, R.; KUMAR SINGH, M.; PRATAP SINGH, D.; PANT, H. Analysis of agricultural crop yield prediction using statistical techniques of machine learning. Materials Today: Proceedings, v. 46, p. 10922–10926, 2021. DOI: 10.1016/j.matpr.2021.01.948. DOI: https://doi.org/10.1016/j.matpr.2021.01.948
PAUDEL, D.; BOOGAARD, H.; DE WIT, A.; JANSSEN, S.; OSINGA, S.; PYLIANIDIS, C.; ATHANASIADIS, I. N. Machine learning for large-scale crop yield forecasting. Agricultural Systems, v. 187, p. 103016, 2021. DOI: https://doi.org/10.1016/j.agsy.2020.103016. DOI: https://doi.org/10.1016/j.agsy.2020.103016
PEPPES, N.; DASKALAKIS, E.; ALEXAKIS, T.; ADAMOPOULOU, E.; DEMESTICHAS, K. Performance of machine learning-based multi-model voting ensemble methods for network threat detection in agriculture 4.0. Sensors, v. 1, n. 22, 2021. DOI: https://doi.org/10.3390/s21227475. DOI: https://doi.org/10.3390/s21227475
PREMACHANDRA, J. S. A. N. W.; KUMARA, P. P. N. V. A novel approach for weather prediction for agriculture in sri lanka using machine learning techniques. In: International Research Conference on Smart Computing and Systems Engineering (SCSE), v 4, p. 182–189, 2021. DOI:10.1109/SCSE53661.2021.9568319. DOI: https://doi.org/10.1109/SCSE53661.2021.9568319
PRODHAN, F. A.; ZHANG, J.; PANGALI SHARMA, T. P.; NANZAD, L.; ZHANG, D.; SEKA, A. M.; AHMED, N.; HASAN, S. S.; HOQUE, M. Z.; MOHANA, H. P. Projection of future drought and its impact on simulated crop yield over south asia using ensemble machine learning approach. Science of The Total Environment, p. 151029, 2021. DOI: 10.1016/j.scitotenv.2021.151029. DOI: https://doi.org/10.1016/j.scitotenv.2021.151029
RADHAKRISHNAN, S. An improved machine learning algorithm for predicting blast disease in paddy crop. Materials Today: Proceedings, v. 33, p. 682–686, 2020. DOI: https://doi.org/10.1016/j.matpr.2020.05.802. DOI: https://doi.org/10.1016/j.matpr.2020.05.802
RAHMATI, O.; FALAH, F.; DAYAL, K. S.; DEO, R. C.; MOHAMMADI, F.; BIGGS, T.; MOGHADDAM, D. D.; NAGHIBI, S. A.; BUI, D. T. Machine learning approaches for spatial modeling of agricultural droughts in the south-east region of queensland australia. Science of The Total Environment, v. 699, p. 134230, 2020. DOI: 10.1016/j.scitotenv.2019.134230. DOI: https://doi.org/10.1016/j.scitotenv.2019.134230
RATTAN, D.; BHATIA, R.; SINGH, M. Software clone detection: A systematic review. Information and Software Technology, v. 55, n. 7, p. 1165–1199, 2020. DOI: https://doi.org/10.1016/j.infsof.2013.01.008. DOI: https://doi.org/10.1016/j.infsof.2013.01.008
SCHULZ, C.; HOLTGRAVE, A.-K.; KLEINSCHMIT, B. Large-scale winter catch crop monitoring with sentinel-2 time series and machine learning–an alternative to on-site controls? Computers and Electronics in Agriculture, v. 186, p. 106173, 2020. DOI: 10.1016/j.compag.2021.106173. DOI: https://doi.org/10.1016/j.compag.2021.106173
SCHWALBERT, R. A.; AMADO, T.; CORASSA, G.; POTT, L. P.; PRASAD, P.; CIAMPITTI, I. A. Satellite-based soybean yield forecast: Integrating machine learning and weather data for improving crop yield prediction in southern brazil. Agricultural and Forest Meteorology, v. 284, p. 107886, 2020. DOI: https://doi.org/10.1016/j.agrformet.2019.107886. DOI: https://doi.org/10.1016/j.agrformet.2019.107886
SCOTT, E.; HIRABAYASHI, L.; LEVENSTEIN, A.; KRUPA, N.; JENKINS, P. The development of a machine learning algorithm to identify occupational injuries in agriculture using pre-hospital care reports. Health Information Science and Systems, v. 9, n. 1, p. 31, 2020. DOI: https://doi.org/10.1007/s13755-021-00161-9. DOI: https://doi.org/10.1007/s13755-021-00161-9
SHAFI, U.; MUMTAZ, R.; IQBAL, N.; ZAIDI, S. M. H.; ZAIDI, S. A. R.; HUSSAIN, I.; MAHMOOD, Z. A multi-modal approach for crop health mapping using low altitude remote sensing, internet of things (iot) and machine learning. IEEE Access, v. 8, n. 112708–112724, 2020. DOI:10.1109/ACCESS.2020.3002948. DOI: https://doi.org/10.1109/ACCESS.2020.3002948
SHUKLA, R.; DUBEY, G.; MALIK, P.; SINDHWANI, N.; ANAND, R.; DAHIYA, A.; YADAV, V. Detecting crop health using machine learning techniques in smart agriculture system. Journal of Scientific and Industrial Research (JSIR), v. 80, p. 699–706, 2021. DOI: https://doi.org/10.56042/jsir.v80i08.44034
SKAWSANG, S.; NAGAI, M. K.; TRIPATHI, N.; SONI, P. Predicting rice pest population occurrence with satellite-derived crop phenology, ground meteorological observation, and machine learning: A case study for the central plain of thailand. Applied Sciences, v. 9, n. 22, 2021. DOI: https://doi.org/10.3390/app9224846. DOI: https://doi.org/10.3390/app9224846
SOSA, L.; JUSTEL, A.; MOLINA, Detection of crop hail damage with a machine learning algorithm using time series of remote sensing data. Agronomy, v. 11, n. 10, 2021. DOI: https://doi.org/10.3390/agronomy11102078. DOI: https://doi.org/10.3390/agronomy11102078
TANG, Z.; WANG, H.; LI, X.; LI, X.; CAI, W.; HAN, C. An object-based approach for mapping crop coverage using multiscale weighted and machine learning methods. In: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, v. 13, p. 1700–1713, 2020. DOI:10.1109/JSTARS.2020.2983439. DOI: https://doi.org/10.1109/JSTARS.2020.2983439
TAO, Y.; YOU, F. Prediction of cover crop adoption through machine learning models using satellite-derived data. IFAC-PapersOnLine, v. 52, n. 30, p. 137–142, 2019. DOI: https://doi.org/10.1016/j.ifacol.2019.12.511. DOI: https://doi.org/10.1016/j.ifacol.2019.12.511
TOWETT, E. K.; DRAKE, L. B.; ACQUAH, G. E.; HAEFELE, S. M.; MCGRATH, S. P.; SHEPHERD, K. D. Comprehensive nutrient analysis in agricultural organic amendments through non-destructive assays using machine learning. PLOS ONE, v. 15, n. 12, p. 1–17, 2019. DOI: https://doi.org/10.1371/journal.pone.0242821. DOI: https://doi.org/10.1371/journal.pone.0242821
TUFAIL, M.; IQBAL, J.; TIWANA, M. I.; ALAM, M. S.; KHAN, Z. A.; KHAN, M. T. Identification of tobacco crop based on machine learning for a precision agricultural sprayer. IEEE Access, v. 9, p. 23814–23825, 2021a. DOI: 10.1109/ACCESS.2021.3056577. DOI: https://doi.org/10.1109/ACCESS.2021.3056577
TUFAIL, R.; AHMAD, A.; JAVED, M. A.; AHMAD, S. R. A machine learning approach for accurate crop type mapping using combined SAR and optical time series data. Advances in Space Research, 2021b. DOI: 10.1016/j.asr.2021.09.019. DOI: https://doi.org/10.1016/j.asr.2021.09.019
VAN ECK, N. J.; WALTMAN, L. Software survey: Vosviewer, a computer program for bibliometric mapping. Scientometrics, v. 84, p. 523-538, 2009. DOI: https://doi.org/10.1007/s11192-009-0146-3. DOI: https://doi.org/10.1007/s11192-009-0146-3
WALEED, M.; UM, T.-W.; KAMAL, T.; USMAN, S. M. Classification of agriculture farm machinery using machine learning and internet of things. Symmetry, v. 13, n. 3, 2021. DOI: https://doi.org/10.3390/sym13030403. DOI: https://doi.org/10.3390/sym13030403
WALTMAN, L.; VAN ECK, N. J.; NOYONS, E. C. A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics, v. 4, n. 4, p. 629–635, 2010. DOI: https://doi.org/10.1016/j.joi.2010.07.002. DOI: https://doi.org/10.1016/j.joi.2010.07.002
WANG, C.; LIU, S.; ZHENG, H.; HU, H.; SONG, L. Application of machine learning in comprehensive evaluation of agricultural high-tech. In: Proceedings of the 3rd International Conference on Computer Science and Application Engineering, CSAE, 2019. DOI: https://doi.org/10.3390/s21113758. DOI: https://doi.org/10.1145/3331453.3362057
WANG, S.; GUAN, K.; WANG, Z.; AINSWORTH, E. A.; ZHENG, T.; TOWNSEND, P. A.; LIU, N.; NAFZIGER, E.; MASTERS, M. D.; LI, K.; WU, G.; JIANG, C. Airborne hyperspectral imaging of nitrogen deficiency on crop traits and yield of maize by machine learning and radiative transfer modeling. International Journal of Applied Earth Observation and Geoinformation, v. 105, p. 102617, 2021. DOI: https://doi.org/10.1016/j.jag.2021.102617. DOI: https://doi.org/10.1016/j.jag.2021.102617
WEI, M. C. F.; MALDANER, L. F.; OTTONI, P. M. N.; MOLIN, J. P. Carrot yield mapping: A precision agriculture approach based on machine learning. AI, v. 1, n. 2, p. 229-241, 2020. DOI: DOI: 10.3390/ai1020015. DOI: https://doi.org/10.3390/ai1020015
WOLANIN, A.; CAMPS-VALLS, G.; GOMEZ-CHOVA, L.; MATEO-GARCIA, G.; VAN DER TOL, C.; ZHANG, Y.; GUANTER, L. Estimating crop primary productivity with sentinel2 and landsat 8 using machine learning methods trained with radiative transfer simulations. Remote Sensing of Environment, v. 225, p. 441–457, DOI: 10.3390/ai1020015. DOI:10.48550/arXiv.2012.1210. DOI: https://doi.org/10.1016/j.rse.2019.03.002
WORRALL, G.; RANGARAJAN, A.; JUDGE, J. Domain-guided machine learning for remotely sensed in-season crop growth estimation. Remote Sensing, v. 13, n. 22, 2021. DOI:10.3390/rs13224605. DOI: https://doi.org/10.3390/rs13224605
XAVIER, L. C. P.; SILVA, S. M. O. D.; CARVALHO, T. M. N.; PONTES FILHO, J. D.; SOUZA FILHO, F. D. A. D. Use of machine learning in evaluation of drought perception in irrigated agriculture: The case of an irrigated perimeter in Brazil. Water, v. 12, n. 6, 2020. DOI: https://doi.org/10.3390/w12061546. DOI: https://doi.org/10.3390/w12061546
XIE, Q.; WANG, J.; LOPEZ-SANCHEZ, J. M.; PENG, X.; LIAO, C.; SHANG, J.; ZHU, J.; FU, H.; BALLESTER-BERMAN, J. D. Crop height estimation of corn from multi-year radarsat-2 polarimetric observables using machine learning. Remote Sensing, v. 13, n. 3, 2020. DOI:10.3390/rs13030392. DOI: https://doi.org/10.3390/rs13030392
YAMAC, S. S.; TODOROVIC, M. Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data. Agricultural Water Management, v. 228, p. 105875, 2020. DOI: https://doi.org/10.1016/j.agwat.2019.105875
YAN, S.; YAO, X.; ZHU, D.; LIU, D.; ZHANG, L.; YU, G.; GAO, B.; YANG, J.; YUN, W. Large-scale crop mapping from multi-source optical satellite imageries using machine learning with discrete grids. International Journal of Applied Earth Observation and Geoinformation, v. 103, p. 102485, 2020. DOI: https://doi.org/10.1016/j.jag.2021.102485
YANG, M.; CHO, S.-I. High-resolution 3d crop reconstruction and automatic analysis of phenotyping index using machine learning. Agriculture, v. 11, n. 10, 2021. DOI:10.3390/agriculture11101010. DOI: https://doi.org/10.3390/agriculture11101010
YANG, N.; LIU, D.; FENG, Q.; XIONG, Q.; ZHANG, L.; REN, T.; ZHAO, Y.; ZHU, D.; HUANG, J. Large-scale crop mapping based on machine learning and parallel computation with grids. Remote Sensing, v. 11, n. 12, 2019. DOI:10.3390/rs11121500. DOI: https://doi.org/10.3390/rs11121500
YUAN, C. Z.; SAN, W. W.; LEONG, T. W. Determining optimal lag time selection function with novel machine learning strategies for better agricultural commodity prices forecasting in Malaysia. In: Proceedings of the 2020 2nd International Conference on Information Technology and Computer Communications, ITCC. 2020. p. 37–42. DOI:10.1145/3417473.3417480. DOI: https://doi.org/10.1145/3417473.3417480
ZHANG, J.; HE, Y.; YUAN, L.; LIU, P.; ZHOU, X.; HUANG, Y. Machine learningbased spectral library for crop classification and status monitoring. Agronomy, v. 9, n. 9, 2019. DOI: https://doi.org/10.3390/agronomy9090496. DOI: https://doi.org/10.3390/agronomy9090496
Descargas
Publicado
Número
Sección
Categorías
Licencia
Derechos de autor 2025 RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECIMA21, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECIMA21 apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.