ESTUDO DA MATÉRIA ORGÂNICA INSOLÚVEL NO METEORITO CARBONÁCEO AGUAS ZARCAS

Autores

DOI:

https://doi.org/10.47820/recima21.v4i2.2695

Palavras-chave:

condritos carbonáceos CM2; geoquímica orgânica; meteoritos; particulados orgânicos; querogênio.

Resumo

Por meio da correlação de dados analíticos, o estudo geoquímico e de microscopia óptica orgânica permite indicar as condições  e o estado de preservação dos insumos orgânicos dispersos em rochas sedimentares, sinalizando o ambiente e os processos geotérmicos e físicos que os afetaram durante os vários estágios evolutivos pós-enterro. Analogamente, no  material orgânico contido na matriz de meteoritos carbonáceos, foi aplicado a mesma metodologia convencional. Partindo desses pressupostos observamos que, o isolado orgânico insolúvel do meteorito carbonáceo Aguas Zarcas expõe morfografia similar a de produtos secundários resultantes de processos intermediários de maturação térmica sedimentar. A partir da caracterização do perfil orgânico, nosso artigo sugere uma correspondência sobre as possíveis condições deposicionais, térmicas e de preservação das partículas orgânicas enquanto no corpo parental de origem dos fragmentos cósmicos.

Downloads

Não há dados estatísticos.

Biografias Autor

Clarice Paixão de Souza

Mestre em Geociências: Patrimônio Geopaleontológico pelo Museu Nacional/UFRJ. Funcionária da Universidade Federal do Rio de Janeiro (UFRJ), lotada no Instituto de Geociências, Laboratório de Palinofácies e Fácies Orgânicas (LAFO). Responsável técnica do laboratório de analise térmica elementar de Carbono Orgânico e Enxofre - SC-144DR (LECO). 

Maria Elizabeth Zucolotto

Graduada em Astronomia pelo Observatório do Valongo/UFRJ. Mestrado em Geologia pelo Instituto de Geociências/UFRJ. Doutorado em Engenharia Metalúrgica e de Materiais pela COPPE/UFRJ. Professora do Museu Nacional/UFRJ, e curadora da coleção de meteoritos desde 1997. Professora associada IV e chefe substituta do Departamento de Geologia e Paleontologia. 

Referências

ALEXANDER, C.M.O.D.; CODY, G.D.; DE GREGORIO, B.T.; NITTLER, L.R.; STROUD, R.M. The nature, origin, and modification of insoluble organic matter in chondrites, the major Source of Earth's C and N. Geochemistry, v. 77, p. 227–256, 2017.

BERNER, R.A. Sedimentary organic matter preservation: an assessment and speculative synthesis — a comment. Marine Chemistry, v. 49, p. 121–122,1995.

BORREGO, J.; LOPEZ, M.; PEDON, J.G.; MORALES, J.A. C/S ratios in estuarine sediments of the Odiel River-mouth, S.W. Spain. Journal of Coastal Research, v. 14, p. 1276–1286,1998.

CURIALE, J.A. Origin of solid bitumen, with emphasis on biological marker results. Organic Geochemistry, v. 10, p. 559-580, 1986.

DUNLOP, D.J.; ÖZDEMIR, O. Rock Magnetism, Fundamentals and Frontiers, Cambridge University Press, p. 231–232, 2001.

DUNN, T.L.; MCCOY, T.J.; SUNSHINE JM e MCSWEEN-JR HY. A coordinated Spectral, Mineralogical, and Compositional Study of Ordinary Chondrites. Science Direct, v. 208, p.789–797, 2010.

ESPITALIÉ J, MARQUIS F e BARSONY I. Geochemical logging. In: Analytical Pyrolysis: Techniques and Applications (Voorhees, KJ, ed.). Butterworth-Heinemann, London. p. 276–304, 1984.

GOLD, T. The Deep Hot Biosphere. Springer, New York, p. 37–77, 1999.

HILL, R.J.; TANG, Y.C.; KAPLAN, I.R. Insights into oil cracking based on laboratory and experiments. Org. Geochem, v. 34 p. 1651–1672, 2003.

JACOB, H. Classification, structure, genesis, and practical importance of solid natural bitumen ("migrabitumen"). International Journal Coal of Geology, v. 11, p. 65–79, 1989.

KERRIDGE JF, MACDOUGALL JD e CARLSON J. Iron-Nickel Sulfides in Murchison meteorite and their relationship to phase Q1. Elsevier, v. 43, p.1–4, 1979.

KOWALEWSKI, I.; SCHAEFFER, P.; ADA, P.; DESSORT, D.; FAFET, A.; CARPENTIER, B.Formation of H2S and sulfur-rich bitumen from a reservoired heavy oil in the presence of elemental sulfur. Organic Geochemistry, v. 41, p. 951–958, 2010.

KRESS, M.E.; TIELENS, A.G.G.M. The role of Fischer-Tropsch catalysis in solar nébula chemistry. Meteoritics e Planetary Science, v. 36, p. 75–91, 2001.

KWOK, S. Enrichment of the solar system by organic compounds delivered from evolved stars. Advances in Space Research, v. 40, p. 1613–1619, 2007.

KWOK, S.; ZHANG, Y. Mixed aromatic-aliphatic organic nanoparticles as carriers of unidentified infrared emission features. Nature, v. 479, p. 80–83, 2011.

LANDIS, C.R.; CASTAÑO, J.R. Maturation and bulk chemical properties of a suite of solid hydrocarbons. Organic Geochemistry, v. 22, p. 137–149, 1995.

MACPHERSON, G.J.; DAVI, A.M. Refractory inclusions in the prototypical CM chondrite, Mighei. Geochimica Cosmochimica Acta, v. 58, p. 5599–5625, 1994.

MCSWEEN JR, N.Y. Are carbonaceous chondrites primitive or processed? Rev. Geophys. Space Phys. V 17(5), p.1059–1078, 1979. (doi:10.1029/RG017i005p01059).

MASTALERZ, M.; DROBNIAK, A.; STANKIEWICZ, A.B. Origin, properties, and implications of solid bitumen in source-rock. International Journal of Coal Geology, v. 195, p.14–36, 2018.

MATTHEWMAN, R.; MARTINS, Z.; SEPHTON, M.A. Type IV Kerogens an analogue for organic macromolecular materials in aqueously altered carbonaceous chondrites. Astrobiology, v. 13, p.324–333, 2013.

MENDONÇA FILHO, J.G.; MENEZES, T.R.; MENDONÇA, J.O.; OLIVEIRA, A.D.; SILVA, T.R.; RANDON, N.F.; SILVA, F.S. Organic Facies: Palynofacies and Organic Geochemistry Approaches. In Tech Rijeka, v.1, p. 211–245, 2012.

MILLER, S.L.; UREY, H.C. Organic compound synthesis on the primitive Earth. Science, v.130, p. 245–251, 1959.

MUKHOPADHYAY, P.K.; MOSSMAN, D.J.; EHRMAN, J.M. The case for vestiges of early solar system biota in carbonaceous chondrites: petroleum geochemical snapshots and possible future petroleum prospect on Mars expedition. Proceedings SPIE, v. 6694, p.1–8, 2007 Doi:10.1117/12.730716. SPIE v 6694.

PETERS, K.E. Guidelines evaluating petroleum source rocks using programs pyrolysis. The Amer. Assoc. Petro. Geol. Bull, v.70, p. 318–329, 1986.

PETERS, K.E.; WALTERS, C.C.; MOLDOWAN, J.M. The Biomarker Guide: Biomarkers and isotopes in the Petroleum Exploration and Earth History, V 1–2. Cambridge, Cambridge University Press 1155 p. 2005.

PIZZARELLO, S. Looking for the origin of life in cosmochemistry: asteroids and their carbon-rich meteorites. Science Journal, v. 6, p. 161–165. 2016.

RUBIN, A.E. Secret of Primate Meteorites. Scientific American, v. 36, p. 37–41, 2013.

SANEI, H. Genesis of solid bitumen. Nature Scientific Reports, v.10, p.15595. 2020. Doi:10.1038/s41598-020-72692.

SCHOENHERR, J.; LITTKE, R.; URAI, J.L.; KUKLA, P.A.; RAWAHI, Z. Polyphase thermal evolution in the Infra-Cambrian Ara Group (South Oman Salt Basin) as deduced by maturity of solid reservoir bitumen. Organic Geochemistry v.38, p.1293–1318, 2007.

SEPHTON, M.A. Organic compounds in carbonaceous meteorites. Nature Scientific Reports. v.19, p. 292–311, 2002.

SINGERLING, S.A.; BREARLEY, A.J. Primary iron sulfides in CM and CR carbonaceous chondrites: insights into nebular processes. Meteoritics e Planetary Science, v. 53, p. 2078–2106, 2018.

TISSOT, B.P.; WELTE, D.H. Petroleum Formation and Occurrence, 2nd ed. Springer-Verlag Berlim, Heidelberg, Nova York, Tóquio, 699 p.1984.

WEI, L.; WANG, G.Y.; MASTALERZ, M. Comparative optical properties of macerals and statistical evaluation of misidentification of vitrinite and solid bitumen from early mature Middle Devonian – Lower Mississippian New Albany Shale: implications for thermal maturity assessment. International Journal of Coal Geology v.68, p. 222–236, 2016.

Publicado

11/02/2023

Como Citar

Paixão de Souza, C., & Zucolotto, M. E. (2023). ESTUDO DA MATÉRIA ORGÂNICA INSOLÚVEL NO METEORITO CARBONÁCEO AGUAS ZARCAS. RECIMA21 -Revista Científica Multidisciplinar - ISSN 2675-6218, 4(2), e422695. https://doi.org/10.47820/recima21.v4i2.2695