BAYESIAN WAVELET SHRINKAGE BASED ON CHAMPERNOWNE PRIOR WITH APPLICATIONS
DOI:
https://doi.org/10.47820/recima21.v2i2.112Keywords:
Statistics, Wavelets, Champernowne Distribution, Nonparametric RegressiomAbstract
Bayesian wavelet shrinkage have been widely used in several areas to reduce noise in data analysis. In this work, we propose a mixture of a Dirac function with the Champernowne distribution as prior probabilistic distribution to wavelet coefficients in a nonparametric regression problem. The associated bayesian shrinkage rule has parameters that are easily interpreted and its performance in simulation studies was superior in most of the considered scenarios against methods available in the literature and used for comparison. Applications of the method to neuronal action potentials and the São Paulo Stock Market Index (IBOVESPA) datasets are made.
Downloads
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2021 RECIMA21 - Revista Científica Multidisciplinar
This work is licensed under a Creative Commons Attribution 4.0 International License.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECIMA21, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECIMA21 apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.