MACHINE LEARNING APPLIED TO DIGITAL MARKETING

Authors

DOI:

https://doi.org/10.47820/recima21.v3i6.1618

Keywords:

research addressed the theme Machine Learning

Abstract

This research addressed the theme Machine Learning applied to Digital marketing. Digital marketing is an industry that is constantly envisioning new opportunities and challenges and among them is the use of machine learning. This research has the general objective to describe how machine learning algorithms can help to find ways to predict the best platforms for advertising so, the specific objectives will be to present and define what digital marketing is, to present the main concepts about machine learning, relate machine learning to digital marketing and finally describe the best algorithms applied to marketing data. Finally, we conclude that if the goal of digital marketers is to increase engagement and brand awareness with leads, it is important that they understand their customers. Machine learning does not replace existing digital marketing jobs. Instead, it will help expand the capabilities of the modern digital marketer, providing a foundation that allows them to reach their full potential.

Downloads

Download data is not yet available.

Author Biographies

  • Fernando Henrique Pereira

    Universidade de Araraquara - UNIARA

  • Renata Mirella Farina

    Universidade de Araraquara - UNIARA

  • Fabiana Florian

    Universidade de Araraquara - UNIARA

References

ABBOTT, D. Applied Predictive Analytics: Principles and Techniques for the Professional Data Analyst. [S.l.]: John Wiley & Sons, 2014

BORDA, M. Statistical and informational model of an its. In: Fundamentals in Information Theory and Coding. [S.l.]: Springer, 2011.

CAVALLINI, R. O Marketing depois de amanhã. São Paulo: Ed. do Autor, 2008.

CINTRA, Flávia Cristina. Marketing digital: a era da tecnologia on-line. Investigação, São Paulo, v. 10, n. 1, p. 6-12. 2010.

CRISTIAN, Brian; GRIFFITHS, Tom. Algoritmos para viver: a ciência exata das decisões humanas. São Paulo: Companhia das Letras, 2017.

DOMINGOS, P. A few useful things to know about machine learning. Communications of the ACM, ACM, v. 55, n. 10, p. 78–87, 2012.

DOMINGOS, Pedro. O algoritmo mestre: como a busca pelo algoritmo de machine learning definitivo recriará nosso mundo. São Paulo: Novatec, 2017.

KIEWELL, D; WINKLER, G. Getting to "the price is right". In: McKinsey&Company (Hrsg.): Big Data, Analytics, and the future of Marketing & Sales, New York, 2011

KIRKPATRICK, David. O efeito Facebook. Rio de Janeiro: Intrínseca, 2011.

KIULIAN, Artur. Robot is the boss: how to do business with Artificial Intelligence. Los Angeles: Artur Kiulian, 2017.

KOTLER, P.; KELLER, K. L. Administração de Marketing. Tradução de Mônica Rosenberg, Cláudia Freire e Brasil Ramos Fernandes. São Paulo: Pearson, 2006.

MAGALHAES-MENDES, J. A comparative study of crossover operators for genetic algorithms to solve the job shop scheduling problem. WSEAS Transactions on Computers, v. 12, n. 4, p. 164–173, 2013.

MAYER-SCHÖNBERGER, V.; CUKIER, K. Big Data. Edição traduzida. Rio de Janeiro: Elsevier, 2013.

PEDREGOSA, F. Scikit-learn: Machine learning in python. Journal of Machine Learning Research, v. 12, n. Oct, p. 2825–2830, 2011.

PINHEIRO, D.; GULLO, J. Comunicação integrada de marketing: gestão dos elementos de comunicação: suporte às estratégias de marketing e de negócios da empresa: fundamentos de marketing e visão de empresa/Duda Pinheiro, José Gullo. – 4. ed. – São Paulo: Atlas, 2013.

SATHYA, R.; ABRAHAM, A. Comparison of supervised and unsupervised learning algorithms for pattern classification. Int. J. Adv. Res. Artificial Intell, Citeseer, v. 2, n. 2, p. 34–38, 2013.

SIEGEL, E. Predictive analytics: the power to predict who will click, buy, lie, or die. Edição revisada. Hoboken: Wiley, 2016.

SMOLA, A.; VISHWANATHAN, S. Introduction to machine learning. Cambridge University, UK, v. 32, p. 34, 2008.

TORRES, C. Bíblia do Marketing Digital. São Paulo: Novatec, 2009.

VAZ, C. A. Os 8 Ps do

Published

26/06/2022

How to Cite

MACHINE LEARNING APPLIED TO DIGITAL MARKETING. (2022). RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 3(6), e361618. https://doi.org/10.47820/recima21.v3i6.1618