USE OF GREEN FUNCTIONS IN MATHEMATICS IN SOLVING PROBLEMS OF INHOMOGENEOUS BOUNDARY VALUES: HEAT CONDUCTION
DOI:
https://doi.org/10.47820/recima21.v4i3.2947Keywords:
Differential equations, Function and Green, Heat conductionAbstract
A Green function is a mathematical function used to solve inhomogeneous differential equations subject to initial conditions or given boundary conditions. This function has applications in various areas of theoretical physics such as mechanics, electromagnetism, acoustics and elementary particle theory. In this work, in order to show the efficiency of this method, an example of practical application in the area of thermal sciences is carried out, from a particularization of the general method deduced.
Downloads
References
Beck, J. V., et al., 1992, “Heat Conduction Using Green’s Functions”, Ed. HPC, USA.
Carslaw, H. S., Jaeger, J. C., 1980, “Conduction of Heat in Solids”, Ed. Oxford Science Publications.
Kreyszig, E., 1999, “Advanced Engineering Mathematics”, Ed. John Wiley & Sons, USA, 8Th Edition.
Özisik, M. N., “Heat Conduction”, Ed. John Wiley & Sons, USA.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2023 RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218
This work is licensed under a Creative Commons Attribution 4.0 International License.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECIMA21, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECIMA21 apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.