THE USE OF STEM CELLS IN PERIODONTAL REGENERATION
DOI:
https://doi.org/10.47820/recima21.v5i12.6040Keywords:
Periodontitis, Regeneration, Stem CellsAbstract
Periodontitis is defined as a chronic infectious-inflammatory disease associated with a dysbiotic biofilm, leading to an imbalance in homeostasis, the loss of periodontal supporting tissues, and potentially culminating in tooth loss. The frequent occurrence of periodontal bone defects has driven growing interest in dentistry in periodontal regeneration, involving the constant search for new biomaterials and, more recently, the introduction of stem cell-based therapies. The aim of this literature review is to analyze the therapeutic potential of mesenchymal stem cells (MSCs) in periodontal regeneration, addressing the challenges associated with their clinical application. Mesenchymal stem cells, particularly derived from the periodontal ligament, have shown significant potential in regenerating damaged periodontal tissues. Studies indicate that these cells have the ability to differentiate into various cell types, including osteoblasts, cementoblasts, and fibroblasts, which are essential for the formation of new periodontal tissue.
Downloads
References
AGGARWAL, S.; PITTENGER, M. F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, v. 105, p. 1815–22, 2005. doi:10.1182/blood-2004-04-1559. DOI: https://doi.org/10.1182/blood-2004-04-1559
ARCURI, L.J.; ABUD, L. G.; DUARTE, F. P. et al. Haploidentical transplantation with post-transplant cyclophosphamide versus unrelated donor hematopoietic stem cell transplantation: A systematic review and meta-analysis. Biol Blood Marrow Transplant, v. 25, n. 12, p. 2422–30, 2019. doi:10.1016/j.bbmt.2019.08.018. DOI: https://doi.org/10.1016/j.bbmt.2019.07.028
CAI, X.; YANG, F.; WALBOOMERS, X. F. et al. Periodontal regeneration via chemoattractive constructs. J Clin Periodontol., v. 45, p. 851–60, 2018. doi:10.1111/jcpe.12935. DOI: https://doi.org/10.1111/jcpe.12928
CHEN, F. M.; GAO, L. N.; TIAN, B. M. et al. Treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: a randomized clinical trial. Stem Cell Res Ther, v. 7, p. 33, 2016. doi:10.1186/s13287-016-0296-8. DOI: https://doi.org/10.1186/s13287-016-0288-1
CHEN, F. M.; SUN, H. H.; LU, H. et al. Stem cell-delivery therapeutics for periodontal tissue regeneration. Biomaterials, v. 33, p. 6320–44, 2012. doi:10.1016/j.biomaterials.2012.05.048. DOI: https://doi.org/10.1016/j.biomaterials.2012.05.048
CHEN, Y.; LIU, H. O potencial de diferenciação de células-tronco mesenquimais gengivais induzidas por meio condicionado de células germinativas dentais apicais. Mol Med Rep., v. 14, p. 3565–72, 2016. doi:10.3892/mmr.2016.5690. DOI: https://doi.org/10.3892/mmr.2016.5690
COSTA, L. A.; EIRO, N.; VACA, A.; VIZOSO, F. J. Towards a new concept of regenerative endodontics based on mesenchymal stem cell-derived secretome products. Bioengineering (Basel)., v. 10, n. 1, p. 4, 2022. doi:10.3390/bioengineering10010004. DOI: https://doi.org/10.3390/bioengineering10010004
CROSSMAN, J.; ELYASI, M.; EL-BIALY, T.; FLORES-MIR, C. Cementum regeneration using stem cells in the dog model: A systematic review. Arch Oral Biol., v. 91, p. 78–90, 2018. doi:10.1016/j.archoralbio.2018.03.015. DOI: https://doi.org/10.1016/j.archoralbio.2018.04.001
DE WERT, G.; MUMMERY, C. Human embryonic stem cells: Research, ethics and policy. Hum Reprod., v. 18, p. 672–82, 2003. doi:10.1093/humrep/deg143. DOI: https://doi.org/10.1093/humrep/deg143
DHOTE, R.; CHARDE, P.; BHONGADE, M.; RAO, J. Stem cells cultured on beta tricalcium phosphate (β-TCP) in combination with recombinant human platelet-derived growth factor-BB (rh-PDGF-BB) for the treatment of human infrabony defects. J Stem Cells., v. 10, p. 243–54, 2015.
DOGAN, A.; OZDEMIR, A.; KUBAR, A.; OYGUR, T. Assessment of periodontal healing by seeding of fibroblast-like cells derived from regenerated periodontal ligament in artificial furcation defects in a dog: a pilot study. Tissue Eng., v. 8, p. 273–82, 2002. doi:10.1089/107632702753725004. DOI: https://doi.org/10.1089/107632702753725030
DOSS, M. X.; SACHINIDIS, A. Current challenges of iPSC-based disease modeling and therapeutic implications. Cells, v. 8, 2019. doi:10.3390/cells8050403. DOI: https://doi.org/10.3390/cells8050403
FEI, X.; JIANG, S.; ZHANG, S. et al. Isolation, culture, and identification of amniotic fluid-derived mesenchymal stem cells. Cell Biochem Biophys, 67, p. 689–94, 2013. doi:10.1007/s12013-013-9564-5. DOI: https://doi.org/10.1007/s12013-013-9558-z
FERRAROTTI, F.; ROMANO, F.; GAMBA, M. N. et al. Human intrabony defect regeneration with micrografts containing dental pulp stem cells: A randomized controlled clinical trial. J Clin Periodontol., v. 45, p. 841–50, 2018. doi:10.1111/jcpe.12934. DOI: https://doi.org/10.1111/jcpe.12931
FU, X.; XU, Y. Challenges to the clinical application of pluripotent stem cells: Towards genomic and functional stability. Genome Med., v. 4, p. 55, 2012. doi:10.1186/gm367. DOI: https://doi.org/10.1186/gm354
GARTNER, S.; KAPLAN, H. S. Long-term culture of human bone marrow cells. Proc Natl Acad Sci U S A., v. 77, p. 4756–9, 1980. doi:10.1073/pnas.77.8.4756. DOI: https://doi.org/10.1073/pnas.77.8.4756
GOULD, T. R.; MELCHER, A. H.; BRUNETTE, D. M. Migration and division of progenitor cell populations in periodontal ligament after wounding. J Periodont Res., v. 15, p. 20–42, 1980. doi:10.1111/j.1600-0765.1980.tb00297.x. DOI: https://doi.org/10.1111/j.1600-0765.1980.tb00258.x
GRONTHOS, S.; MANKANI, M.; BRAHIM, J.; ROBEY, P. G.; SHI, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A., v. 97, p. 13625–30, 2000. doi:10.1073/pnas.240309797. DOI: https://doi.org/10.1073/pnas.240309797
HA, D. H.; KIM, H.; LEE, J. et al. Mesenchymal stem/stromal cell-derived exosomes for immunomodulatory therapeutics and skin regeneration. Cells, v. 9, 2020. doi:10.3390/cells9112240. DOI: https://doi.org/10.3390/cells9051157
HAN, J.; MENICANIN, D.; GRONTHOS, S. et al. Stem cells, tissue engineering and periodontal regeneration. Aust Dent J., v. 59, p. 117–30, 2014. doi:10.1111/adj.12114. DOI: https://doi.org/10.1111/adj.12100
HE, W.; GOODKIND, A. L.; KOWALECZKO, M. et al. Cancer treatment evolution from traditional methods to stem cells and gene therapy. Curr Gene Ther., v. 22, n. 5, p. 368–85, 2022. doi:10.2174/1566523222666220420124039. DOI: https://doi.org/10.2174/1566523221666211119110755
HERNÁNDEZ-MONJARAZ, B.; SANTIAGO-OSORIO, E.; LEDESMA-MARTÍNEZ, E. et al. Retrieval of a periodontally compromised tooth by allogeneic grafting of mesenchymal stem cells from dental pulp: A case report. J Int Med Res., v. 46, p. 2983–93, 2018. doi:10.1177/0300060518779070. DOI: https://doi.org/10.1177/0300060518773244
HUANG, G. T. J.; GRONTHOS, S.; SHI, S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: Their biology and role in regenerative medicine. J Dent Res., v. 88, p. 792–806, 2009. doi:10.1177/0022034509340867. DOI: https://doi.org/10.1177/0022034509340867
IVANOVSKI, S.; VAQUETTE, C.; GRONTHOS, S. et al. Multiphasic scaffolds for periodontal tissue engineering. J Dent Res., v. 93, p. 1212–21, 2014. doi:10.1177/0022034514547278. DOI: https://doi.org/10.1177/0022034514544301
JIANG, J.; WU, X.; LIN, M. et al. Application of autologous periosteal cells for the regeneration of class III furcation defects in Beagle dogs. Cytotechnology., v. 62, p. 235–43, 2010. doi:10.1007/s10616-010-9262-y. DOI: https://doi.org/10.1007/s10616-010-9284-y
KIM, S. G. A cell-based approach to dental pulp regeneration using mesenchymal stem cells: A scoping review. Int J Mol Sci., v. 22, n. 9, p. 4357, 2021. doi:10.3390/ijms22094357. DOI: https://doi.org/10.3390/ijms22094357
LEITE SEGUNDO, A. V.; VASCONCELOS, B. C. do E. Células-tronco e engenharia tecidual: perspectivas de aplicação em odontologia. Rev Ciências Médicas., v. 16, 2007.
LI, X.; HE, X. T.; YIN, Y. et al. Administration of signalling molecules dictates stem cell homing for in situ regeneration. J Cell Mol Med., v. 21, p. 3162–77, 2017. doi:10.1111/jcmm.13223. DOI: https://doi.org/10.1111/jcmm.13286
LØVSCHALL, H.; ARENHOLT-BINDSLEV, D.; CLAUSEN, P. P.; KARRING, T. Activation of the Notch signaling pathway in response to pulp capping of rat molars. Eur J Oral Sci, v. 113, n. 4, p. 312–7, 2005. doi: 10.1111/j.1600-0722.2005.00221.x. DOI: https://doi.org/10.1111/j.1600-0722.2005.00221.x
MIURA, M.; GRONTHOS, S.; ZHAO, M.; LU, B.; FISHER, L. W.; ROBEY, P. G.; SHI, S. SHED: Stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA., v. 100, n. 10, p. 5807–12, 2003. doi: 10.1073/pnas.0937635100. DOI: https://doi.org/10.1073/pnas.0937635100
MROZIK, K. M.; WADA, N.; MARINO, V.; RICHTER, W.; SHI, S.; WHEELER, D. L.; GRONTHOS, S.; BARTOLD, P. M. Regeneration of periodontal tissues using allogeneic periodontal ligament stem cells in an ovine model. Regen Med., v. 8, n. 6, p. 711–23, 2013. doi: 10.2217/rme.13.69. DOI: https://doi.org/10.2217/rme.13.66
NAGATA, M.; AKAMINE, Y.; KURASHINA, K. Meio condicionado de células-tronco do ligamento periodontal melhora a regeneração periodontal. Tissue Eng Part A., v. 23, n. 9–10, p. 367–77, 2017. doi: 10.1089/ten.TEA.2016.0252.
NÚÑEZ, J.; SANZ-BLASCO, S.; VIGNOLETTI, F.; VALLÉS, C.; FIGUERO, E.; SANZ, M. Periodontal regeneration: stem cells and platelet-rich plasma: from basic research to the clinic and future development of cell transplantation therapy for tissue regeneration. Int J Dent., v. 2012, p. 307024, 2012. doi: 10.1155/2012/307024. DOI: https://doi.org/10.1155/2012/307024
PAPAPANOU, P. N.; SANZ, M.; BUDUNELI, N.; DIETRICH, T.; FERES, M.; FINE, D. H. et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin Periodontol., v. 45, Suppl 20, S170, 2018. doi: 10.1111/jcpe.12946. DOI: https://doi.org/10.1111/jcpe.12946
PARK, C. H.; KIM, K. H.; LEE, Y. M.; SEOL, Y. J. Advanced engineering strategies for periodontal complex regeneration. Materials (Basel), v. 9, n. 7, p. 57, 2016. doi: 10.3390/ma907057. DOI: https://doi.org/10.3390/ma9010057
PARK, J. M.; KIM, J.; KIM, M. Y.; KIM, S. W. Effects of mesenchymal stem cell on dopaminergic neurons, motor and memory functions in animal models of Parkinson's disease: a systematic review and meta-analysis. Neural Regen Res., v. 19, n. 7, p. 1584–92, 2024. doi: 10.4103/1673-5374.371482. DOI: https://doi.org/10.4103/1673-5374.387976
PENG, Y.; KE, M.; XUE, W.; NI, Y.; HE, C.; DENG, Z. Donor-derived mesenchymal stem cells combined with low-dose tacrolimus prevent acute rejection after renal transplantation: A clinical pilot study. Transplantation., v. 95, n. 2, p. 161–8, 2013. doi: 10.1097/TP.0b013e318271caa2. DOI: https://doi.org/10.1097/TP.0b013e3182754c53
PIRES, I. G.; BATISTA, N. F.; RODRIGUES, R. C.; DE SOUZA, A. G.; MARTINS, A. V.; RODRIGUES, L. G. Clinical efficacy of stem-cell therapy on diabetes mellitus: A systematic review and meta-analysis. Transpl Immunol., v. 75, p. 101740, 2022;. doi: 10.1016/j.trim.2022.101740. DOI: https://doi.org/10.1016/j.trim.2022.101740
PREISIG, E.; SCHROEDER, H. E. Long‐term culture of human periodontal ligament cells with autologous root discs. J Periodontal Res., v. 23, n. 3, p. 211–6, 1988. doi: 10.1111/j.1600-0765.1988.tb01547.x. DOI: https://doi.org/10.1111/j.1600-0765.1988.tb01360.x
QIU, J.; ZHOU, J.; WANG, J.; CHEN, L.; TAN, J.; ZHENG, L. et al. Improvement of periodontal tissue regeneration by conditioned medium of mesenchymal stem cells derived from gingiva or periodontal ligament: a comparative study in rats. Stem Cell Res Ther., v. 11, n. 1, p. 42, 2020. doi: 10.1186/s13287-020-1551-0. DOI: https://doi.org/10.1186/s13287-019-1546-9
QUINLAN, A. R.; BOLAND, M. J.; BALL, M. P.; MELTON, C.; VANDENBERG, D. J.; ILIFF, B. W. et al. Genome sequencing of mouse induced pluripotent stem cells reveals retroelement stability and infrequent DNA rearrangement during reprogramming. Cell Stem Cell., v. 9, n. 4, p. 366–73, 2011. doi: 10.1016/j.stem.2011.09.008. DOI: https://doi.org/10.1016/j.stem.2011.07.018
ROMANOV, Y. A.; SVINTSITSKAYA, V. A.; SMIRNOV, V. N. Searching for alternative sources of postnatal human mesenchymal stem cells: Candidate MSC-like cells from umbilical cord. Stem Cells., v. 21, n. 1, p. 105–10, 2003. doi: 10.1634/stemcells.21-1-105. DOI: https://doi.org/10.1634/stemcells.21-1-105
SALARI SEDIGH, H.; SAFFARPOUR, A.; JAMSHIDI, S.; ASHOURI, M.; NASSIRI, S. M.; DEHGHAN, M. M.; RANJBAR, E.; SHAFIEIAN, R. In vitro investigation of canine periodontal ligament-derived mesenchymal stem cells: A possibility of promising tool for periodontal regeneration. J Oral Biol Craniofac Res., v. 13, p. 403–411, 2023. doi: 10.1016/j.jobcr.2023.02.005 DOI: https://doi.org/10.1016/j.jobcr.2023.03.010
SÁNCHEZ, N.; MATOS, S.; NUNES, R.; CARDOSO, J.; RIBEIRO, F.; MARTINS, T. Periodontal regeneration using a xenogeneic bone substitute seeded with autologous periodontal ligament-derived mesenchymal stem cells: A 12-month quasi-randomized controlled pilot clinical trial. J Clin Periodontol., v. 47, p. 1391–1402, 2020. doi: 10.1111/jcpe.13382 DOI: https://doi.org/10.1111/jcpe.13368
SANTOS, N. C. C. D.; COTRIM, K. C.; ACHÔA, G. L.; KALIL, E. C.; KANTARCI, A.; BUENO, D. F. The use of mesenchymal stromal/stem cells (MSC) for periodontal and peri-implant regeneration: Scoping review. Braz Dent J., v. 25, p. 35, 2024. DOI: https://doi.org/10.1590/0103-6440202406134
SEO, B. M.; MIURA, M.; GRONTHOS, S.; BARTOLD, P. M.; BATOULI, S.; BRAHIM, J.; YOUNG, M.; GEHRON, R. P.; SHI, S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet., v. 364, p. 149–155, 2004. doi: 10.1016/S0140-6736(04)16627-0 DOI: https://doi.org/10.1016/S0140-6736(04)16627-0
SHARKIS, S. J.; JONES, R. J.; CIVIN, C.; JANG, Y. Y. Pluripotent stem cell-based cancer therapy: Promise and challenges. Sci Transl Med, v. 4, p. 127ps9, 2012. doi: 10.1126/scitranslmed.3003623 DOI: https://doi.org/10.1126/scitranslmed.3003920
TAKAHASHI, K.; TANABE, K.; OHNUKI, M.; NARITA, M.; ICHISAKA, T.; TOMODA, K.; YAMANAKA, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell., v. 131, p. 861–872, 2007. doi: 10.1016/j.cell.2007.11.019 DOI: https://doi.org/10.1016/j.cell.2007.11.019
TAKAHASHI, K.; YAMANAKA, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell., v. 126, p. 663–676, 2006. doi: 10.1016/j.cell.2006.07.024 DOI: https://doi.org/10.1016/j.cell.2006.07.024
THESLEFF, I.; NIEMINEN, P. Tooth morphogenesis and cell differentiation. Curr Opin Cell Biol., v. 8, p. 844–850, 1996. doi: 10.1016/S0955-0674(96)80133-3 DOI: https://doi.org/10.1016/S0955-0674(96)80086-X
TSUMANUMA, Y, IWATA, T, WASHIO, K, YOSHIDA, T, YAMADA, A, TAKAYAMA, S, TSUJI, Y.; SHIBATA, Y.; BABA, S.; ANDO, T.; YAMATO, M.; OKANO, T.; IZUMI, Y. Comparison of different tissue-derived stem cell sheets for periodontal regeneration in a canine 1-wall defect model. Biomaterials, v. 32, p. 5819–5825, 2011. doi: 10.1016/j.biomaterials.2011.04.056 DOI: https://doi.org/10.1016/j.biomaterials.2011.04.071
UCCELLI, A.; MORETTA, L.; PISTOIA, V. Mesenchymal stem cells in health and disease. Nat Rev Immunol., v. 8, p. 726–736, 2008. doi: 10.1038/nri2395 DOI: https://doi.org/10.1038/nri2395
WAGNER, J.; KEAN, T. J.; YOUNG, R. G.; DENNIS, J. E.; CAPLAN, A. I. Optimizing mesenchymal stem cell-based therapeutics. Curr Opin Biotechnol., v. 20, p. 531–536, 2009. doi: 10.1016/j.copbio.2009.08.009 DOI: https://doi.org/10.1016/j.copbio.2009.08.009
WANG, W.; YUAN, C.; LIU, Z.; GENG, T.; LI, X.; WEI, L.; NIU, W.; WANG, P. Characteristic comparison between canine and human dental mesenchymal stem cells for periodontal regeneration research in preclinical animal studies. Tissue Cell., v. 67, p. 101405, 2020. doi: 10.1016/j.tice.2020.101405 DOI: https://doi.org/10.1016/j.tice.2020.101405
YAMANAKA, S. Pluripotent stem cell-based cell therapy: Promise and challenges. Cell Stem Cell, v. 27, p. 523–531, 2020. doi: 10.1016/j.stem.2020.09.011 DOI: https://doi.org/10.1016/j.stem.2020.09.014
ZUK, P. A.; ZHU, M.; ASHJIAN, P.; DE UGARTE, D. A.; HUANG, J. I.; MIZUNO, H.; ALFONSO, Z. C.; FRASER, J. K.; BENHAIM, P.; HEDRICK, M. H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng., v. 7, p. 211–228, 2001. doi: 10.1089/107632701300062859 DOI: https://doi.org/10.1089/107632701300062859
Downloads
Published
License
Copyright (c) 2024 RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218
This work is licensed under a Creative Commons Attribution 4.0 International License.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECIMA21, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECIMA21 apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.