EL USO DE CÉLULAS MADRE EN LA REGENERACIÓN PERIODONTAL

Autores/as

DOI:

https://doi.org/10.47820/recima21.v5i12.6040

Palabras clave:

Periodontitis, Regeneración, Células Madre

Resumen

La periodontitis se define como una enfermedad crónica infecciosa e inflamatoria asociada a un biofilm disbiótico, que conduce a un desequilibrio en la homeostasis, la pérdida de los tejidos de soporte periodontal y, potencialmente, culmina en la pérdida de dientes. La frecuente aparición de defectos óseos periodontales ha generado un creciente interés en la odontología por la regeneración periodontal, lo que implica la búsqueda constante de nuevos biomateriales y, más recientemente, la introducción de terapias basadas en células madre. El objetivo de esta revisión de la literatura es analizar el potencial terapéutico de las células madre mesenquimales (CMM) en la regeneración periodontal, abordando los desafíos asociados con su aplicación clínica. Las células madre mesenquimales, en particular las derivadas del ligamento periodontal, han demostrado un potencial significativo para regenerar tejidos periodontales dañados. Los estudios indican que estas células tienen la capacidad de diferenciarse en varios tipos celulares, incluidos osteoblastos, cementoblastos y fibroblastos, esenciales para la formación de nuevo tejido periodontal.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Giovanna Denuncio

    Univeritas UNG.

  • Sandy Lima Araújo

    Univeritas UNG.

  • Fernanda Aparecida dos Santos Colombo

    Univeritas UNG.

  • Jose Augusto Rodrigues

    Graduado en Odontología (1997), Maestría (2001) y Doctorado (2003) en Clínica Odontológica - área de concentración en Operatoria Dental por FOP UNICAMP, Proficiencia en Láser por la Academy of Laser Dentistry ALD-USA. Profesor Investigador del PPG y de la Licenciatura en Odontología de la Universidad Guarulhos - UNG. Profesor del curso de Odontología de la Universidad São Judas Tadeu - USJT. Faculty Associate del departamento Dentistry/Restorative Dental Sciences, del Health Science Center de la University of Florida. Tiene experiencia en Clínica Odontológica en el área de Operatoria Dental, realizando investigaciones sobre blanqueamiento dental, resinas compuestas y enfermedad caries. Correo electrónico: gutojar@yahoo.com

    https://lattes.cnpq.br/5427129618730432

  • Luciene Cristina de Figueiredo

    Univeritas UNG.

Referencias

AGGARWAL, S.; PITTENGER, M. F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, v. 105, p. 1815–22, 2005. doi:10.1182/blood-2004-04-1559. DOI: https://doi.org/10.1182/blood-2004-04-1559

ARCURI, L.J.; ABUD, L. G.; DUARTE, F. P. et al. Haploidentical transplantation with post-transplant cyclophosphamide versus unrelated donor hematopoietic stem cell transplantation: A systematic review and meta-analysis. Biol Blood Marrow Transplant, v. 25, n. 12, p. 2422–30, 2019. doi:10.1016/j.bbmt.2019.08.018. DOI: https://doi.org/10.1016/j.bbmt.2019.07.028

CAI, X.; YANG, F.; WALBOOMERS, X. F. et al. Periodontal regeneration via chemoattractive constructs. J Clin Periodontol., v. 45, p. 851–60, 2018. doi:10.1111/jcpe.12935. DOI: https://doi.org/10.1111/jcpe.12928

CHEN, F. M.; GAO, L. N.; TIAN, B. M. et al. Treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: a randomized clinical trial. Stem Cell Res Ther, v. 7, p. 33, 2016. doi:10.1186/s13287-016-0296-8. DOI: https://doi.org/10.1186/s13287-016-0288-1

CHEN, F. M.; SUN, H. H.; LU, H. et al. Stem cell-delivery therapeutics for periodontal tissue regeneration. Biomaterials, v. 33, p. 6320–44, 2012. doi:10.1016/j.biomaterials.2012.05.048. DOI: https://doi.org/10.1016/j.biomaterials.2012.05.048

CHEN, Y.; LIU, H. O potencial de diferenciação de células-tronco mesenquimais gengivais induzidas por meio condicionado de células germinativas dentais apicais. Mol Med Rep., v. 14, p. 3565–72, 2016. doi:10.3892/mmr.2016.5690. DOI: https://doi.org/10.3892/mmr.2016.5690

COSTA, L. A.; EIRO, N.; VACA, A.; VIZOSO, F. J. Towards a new concept of regenerative endodontics based on mesenchymal stem cell-derived secretome products. Bioengineering (Basel)., v. 10, n. 1, p. 4, 2022. doi:10.3390/bioengineering10010004. DOI: https://doi.org/10.3390/bioengineering10010004

CROSSMAN, J.; ELYASI, M.; EL-BIALY, T.; FLORES-MIR, C. Cementum regeneration using stem cells in the dog model: A systematic review. Arch Oral Biol., v. 91, p. 78–90, 2018. doi:10.1016/j.archoralbio.2018.03.015. DOI: https://doi.org/10.1016/j.archoralbio.2018.04.001

DE WERT, G.; MUMMERY, C. Human embryonic stem cells: Research, ethics and policy. Hum Reprod., v. 18, p. 672–82, 2003. doi:10.1093/humrep/deg143. DOI: https://doi.org/10.1093/humrep/deg143

DHOTE, R.; CHARDE, P.; BHONGADE, M.; RAO, J. Stem cells cultured on beta tricalcium phosphate (β-TCP) in combination with recombinant human platelet-derived growth factor-BB (rh-PDGF-BB) for the treatment of human infrabony defects. J Stem Cells., v. 10, p. 243–54, 2015.

DOGAN, A.; OZDEMIR, A.; KUBAR, A.; OYGUR, T. Assessment of periodontal healing by seeding of fibroblast-like cells derived from regenerated periodontal ligament in artificial furcation defects in a dog: a pilot study. Tissue Eng., v. 8, p. 273–82, 2002. doi:10.1089/107632702753725004. DOI: https://doi.org/10.1089/107632702753725030

DOSS, M. X.; SACHINIDIS, A. Current challenges of iPSC-based disease modeling and therapeutic implications. Cells, v. 8, 2019. doi:10.3390/cells8050403. DOI: https://doi.org/10.3390/cells8050403

FEI, X.; JIANG, S.; ZHANG, S. et al. Isolation, culture, and identification of amniotic fluid-derived mesenchymal stem cells. Cell Biochem Biophys, 67, p. 689–94, 2013. doi:10.1007/s12013-013-9564-5. DOI: https://doi.org/10.1007/s12013-013-9558-z

FERRAROTTI, F.; ROMANO, F.; GAMBA, M. N. et al. Human intrabony defect regeneration with micrografts containing dental pulp stem cells: A randomized controlled clinical trial. J Clin Periodontol., v. 45, p. 841–50, 2018. doi:10.1111/jcpe.12934. DOI: https://doi.org/10.1111/jcpe.12931

FU, X.; XU, Y. Challenges to the clinical application of pluripotent stem cells: Towards genomic and functional stability. Genome Med., v. 4, p. 55, 2012. doi:10.1186/gm367. DOI: https://doi.org/10.1186/gm354

GARTNER, S.; KAPLAN, H. S. Long-term culture of human bone marrow cells. Proc Natl Acad Sci U S A., v. 77, p. 4756–9, 1980. doi:10.1073/pnas.77.8.4756. DOI: https://doi.org/10.1073/pnas.77.8.4756

GOULD, T. R.; MELCHER, A. H.; BRUNETTE, D. M. Migration and division of progenitor cell populations in periodontal ligament after wounding. J Periodont Res., v. 15, p. 20–42, 1980. doi:10.1111/j.1600-0765.1980.tb00297.x. DOI: https://doi.org/10.1111/j.1600-0765.1980.tb00258.x

GRONTHOS, S.; MANKANI, M.; BRAHIM, J.; ROBEY, P. G.; SHI, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A., v. 97, p. 13625–30, 2000. doi:10.1073/pnas.240309797. DOI: https://doi.org/10.1073/pnas.240309797

HA, D. H.; KIM, H.; LEE, J. et al. Mesenchymal stem/stromal cell-derived exosomes for immunomodulatory therapeutics and skin regeneration. Cells, v. 9, 2020. doi:10.3390/cells9112240. DOI: https://doi.org/10.3390/cells9051157

HAN, J.; MENICANIN, D.; GRONTHOS, S. et al. Stem cells, tissue engineering and periodontal regeneration. Aust Dent J., v. 59, p. 117–30, 2014. doi:10.1111/adj.12114. DOI: https://doi.org/10.1111/adj.12100

HE, W.; GOODKIND, A. L.; KOWALECZKO, M. et al. Cancer treatment evolution from traditional methods to stem cells and gene therapy. Curr Gene Ther., v. 22, n. 5, p. 368–85, 2022. doi:10.2174/1566523222666220420124039. DOI: https://doi.org/10.2174/1566523221666211119110755

HERNÁNDEZ-MONJARAZ, B.; SANTIAGO-OSORIO, E.; LEDESMA-MARTÍNEZ, E. et al. Retrieval of a periodontally compromised tooth by allogeneic grafting of mesenchymal stem cells from dental pulp: A case report. J Int Med Res., v. 46, p. 2983–93, 2018. doi:10.1177/0300060518779070. DOI: https://doi.org/10.1177/0300060518773244

HUANG, G. T. J.; GRONTHOS, S.; SHI, S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: Their biology and role in regenerative medicine. J Dent Res., v. 88, p. 792–806, 2009. doi:10.1177/0022034509340867. DOI: https://doi.org/10.1177/0022034509340867

IVANOVSKI, S.; VAQUETTE, C.; GRONTHOS, S. et al. Multiphasic scaffolds for periodontal tissue engineering. J Dent Res., v. 93, p. 1212–21, 2014. doi:10.1177/0022034514547278. DOI: https://doi.org/10.1177/0022034514544301

JIANG, J.; WU, X.; LIN, M. et al. Application of autologous periosteal cells for the regeneration of class III furcation defects in Beagle dogs. Cytotechnology., v. 62, p. 235–43, 2010. doi:10.1007/s10616-010-9262-y. DOI: https://doi.org/10.1007/s10616-010-9284-y

KIM, S. G. A cell-based approach to dental pulp regeneration using mesenchymal stem cells: A scoping review. Int J Mol Sci., v. 22, n. 9, p. 4357, 2021. doi:10.3390/ijms22094357. DOI: https://doi.org/10.3390/ijms22094357

LEITE SEGUNDO, A. V.; VASCONCELOS, B. C. do E. Células-tronco e engenharia tecidual: perspectivas de aplicação em odontologia. Rev Ciências Médicas., v. 16, 2007.

LI, X.; HE, X. T.; YIN, Y. et al. Administration of signalling molecules dictates stem cell homing for in situ regeneration. J Cell Mol Med., v. 21, p. 3162–77, 2017. doi:10.1111/jcmm.13223. DOI: https://doi.org/10.1111/jcmm.13286

LØVSCHALL, H.; ARENHOLT-BINDSLEV, D.; CLAUSEN, P. P.; KARRING, T. Activation of the Notch signaling pathway in response to pulp capping of rat molars. Eur J Oral Sci, v. 113, n. 4, p. 312–7, 2005. doi: 10.1111/j.1600-0722.2005.00221.x. DOI: https://doi.org/10.1111/j.1600-0722.2005.00221.x

MIURA, M.; GRONTHOS, S.; ZHAO, M.; LU, B.; FISHER, L. W.; ROBEY, P. G.; SHI, S. SHED: Stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA., v. 100, n. 10, p. 5807–12, 2003. doi: 10.1073/pnas.0937635100. DOI: https://doi.org/10.1073/pnas.0937635100

MROZIK, K. M.; WADA, N.; MARINO, V.; RICHTER, W.; SHI, S.; WHEELER, D. L.; GRONTHOS, S.; BARTOLD, P. M. Regeneration of periodontal tissues using allogeneic periodontal ligament stem cells in an ovine model. Regen Med., v. 8, n. 6, p. 711–23, 2013. doi: 10.2217/rme.13.69. DOI: https://doi.org/10.2217/rme.13.66

NAGATA, M.; AKAMINE, Y.; KURASHINA, K. Meio condicionado de células-tronco do ligamento periodontal melhora a regeneração periodontal. Tissue Eng Part A., v. 23, n. 9–10, p. 367–77, 2017. doi: 10.1089/ten.TEA.2016.0252.

NÚÑEZ, J.; SANZ-BLASCO, S.; VIGNOLETTI, F.; VALLÉS, C.; FIGUERO, E.; SANZ, M. Periodontal regeneration: stem cells and platelet-rich plasma: from basic research to the clinic and future development of cell transplantation therapy for tissue regeneration. Int J Dent., v. 2012, p. 307024, 2012. doi: 10.1155/2012/307024. DOI: https://doi.org/10.1155/2012/307024

PAPAPANOU, P. N.; SANZ, M.; BUDUNELI, N.; DIETRICH, T.; FERES, M.; FINE, D. H. et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin Periodontol., v. 45, Suppl 20, S170, 2018. doi: 10.1111/jcpe.12946. DOI: https://doi.org/10.1111/jcpe.12946

PARK, C. H.; KIM, K. H.; LEE, Y. M.; SEOL, Y. J. Advanced engineering strategies for periodontal complex regeneration. Materials (Basel), v. 9, n. 7, p. 57, 2016. doi: 10.3390/ma907057. DOI: https://doi.org/10.3390/ma9010057

PARK, J. M.; KIM, J.; KIM, M. Y.; KIM, S. W. Effects of mesenchymal stem cell on dopaminergic neurons, motor and memory functions in animal models of Parkinson's disease: a systematic review and meta-analysis. Neural Regen Res., v. 19, n. 7, p. 1584–92, 2024. doi: 10.4103/1673-5374.371482. DOI: https://doi.org/10.4103/1673-5374.387976

PENG, Y.; KE, M.; XUE, W.; NI, Y.; HE, C.; DENG, Z. Donor-derived mesenchymal stem cells combined with low-dose tacrolimus prevent acute rejection after renal transplantation: A clinical pilot study. Transplantation., v. 95, n. 2, p. 161–8, 2013. doi: 10.1097/TP.0b013e318271caa2. DOI: https://doi.org/10.1097/TP.0b013e3182754c53

PIRES, I. G.; BATISTA, N. F.; RODRIGUES, R. C.; DE SOUZA, A. G.; MARTINS, A. V.; RODRIGUES, L. G. Clinical efficacy of stem-cell therapy on diabetes mellitus: A systematic review and meta-analysis. Transpl Immunol., v. 75, p. 101740, 2022;. doi: 10.1016/j.trim.2022.101740. DOI: https://doi.org/10.1016/j.trim.2022.101740

PREISIG, E.; SCHROEDER, H. E. Long‐term culture of human periodontal ligament cells with autologous root discs. J Periodontal Res., v. 23, n. 3, p. 211–6, 1988. doi: 10.1111/j.1600-0765.1988.tb01547.x. DOI: https://doi.org/10.1111/j.1600-0765.1988.tb01360.x

QIU, J.; ZHOU, J.; WANG, J.; CHEN, L.; TAN, J.; ZHENG, L. et al. Improvement of periodontal tissue regeneration by conditioned medium of mesenchymal stem cells derived from gingiva or periodontal ligament: a comparative study in rats. Stem Cell Res Ther., v. 11, n. 1, p. 42, 2020. doi: 10.1186/s13287-020-1551-0. DOI: https://doi.org/10.1186/s13287-019-1546-9

QUINLAN, A. R.; BOLAND, M. J.; BALL, M. P.; MELTON, C.; VANDENBERG, D. J.; ILIFF, B. W. et al. Genome sequencing of mouse induced pluripotent stem cells reveals retroelement stability and infrequent DNA rearrangement during reprogramming. Cell Stem Cell., v. 9, n. 4, p. 366–73, 2011. doi: 10.1016/j.stem.2011.09.008. DOI: https://doi.org/10.1016/j.stem.2011.07.018

ROMANOV, Y. A.; SVINTSITSKAYA, V. A.; SMIRNOV, V. N. Searching for alternative sources of postnatal human mesenchymal stem cells: Candidate MSC-like cells from umbilical cord. Stem Cells., v. 21, n. 1, p. 105–10, 2003. doi: 10.1634/stemcells.21-1-105. DOI: https://doi.org/10.1634/stemcells.21-1-105

SALARI SEDIGH, H.; SAFFARPOUR, A.; JAMSHIDI, S.; ASHOURI, M.; NASSIRI, S. M.; DEHGHAN, M. M.; RANJBAR, E.; SHAFIEIAN, R. In vitro investigation of canine periodontal ligament-derived mesenchymal stem cells: A possibility of promising tool for periodontal regeneration. J Oral Biol Craniofac Res., v. 13, p. 403–411, 2023. doi: 10.1016/j.jobcr.2023.02.005 DOI: https://doi.org/10.1016/j.jobcr.2023.03.010

SÁNCHEZ, N.; MATOS, S.; NUNES, R.; CARDOSO, J.; RIBEIRO, F.; MARTINS, T. Periodontal regeneration using a xenogeneic bone substitute seeded with autologous periodontal ligament-derived mesenchymal stem cells: A 12-month quasi-randomized controlled pilot clinical trial. J Clin Periodontol., v. 47, p. 1391–1402, 2020. doi: 10.1111/jcpe.13382 DOI: https://doi.org/10.1111/jcpe.13368

SANTOS, N. C. C. D.; COTRIM, K. C.; ACHÔA, G. L.; KALIL, E. C.; KANTARCI, A.; BUENO, D. F. The use of mesenchymal stromal/stem cells (MSC) for periodontal and peri-implant regeneration: Scoping review. Braz Dent J., v. 25, p. 35, 2024. DOI: https://doi.org/10.1590/0103-6440202406134

SEO, B. M.; MIURA, M.; GRONTHOS, S.; BARTOLD, P. M.; BATOULI, S.; BRAHIM, J.; YOUNG, M.; GEHRON, R. P.; SHI, S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet., v. 364, p. 149–155, 2004. doi: 10.1016/S0140-6736(04)16627-0 DOI: https://doi.org/10.1016/S0140-6736(04)16627-0

SHARKIS, S. J.; JONES, R. J.; CIVIN, C.; JANG, Y. Y. Pluripotent stem cell-based cancer therapy: Promise and challenges. Sci Transl Med, v. 4, p. 127ps9, 2012. doi: 10.1126/scitranslmed.3003623 DOI: https://doi.org/10.1126/scitranslmed.3003920

TAKAHASHI, K.; TANABE, K.; OHNUKI, M.; NARITA, M.; ICHISAKA, T.; TOMODA, K.; YAMANAKA, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell., v. 131, p. 861–872, 2007. doi: 10.1016/j.cell.2007.11.019 DOI: https://doi.org/10.1016/j.cell.2007.11.019

TAKAHASHI, K.; YAMANAKA, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell., v. 126, p. 663–676, 2006. doi: 10.1016/j.cell.2006.07.024 DOI: https://doi.org/10.1016/j.cell.2006.07.024

THESLEFF, I.; NIEMINEN, P. Tooth morphogenesis and cell differentiation. Curr Opin Cell Biol., v. 8, p. 844–850, 1996. doi: 10.1016/S0955-0674(96)80133-3 DOI: https://doi.org/10.1016/S0955-0674(96)80086-X

TSUMANUMA, Y, IWATA, T, WASHIO, K, YOSHIDA, T, YAMADA, A, TAKAYAMA, S, TSUJI, Y.; SHIBATA, Y.; BABA, S.; ANDO, T.; YAMATO, M.; OKANO, T.; IZUMI, Y. Comparison of different tissue-derived stem cell sheets for periodontal regeneration in a canine 1-wall defect model. Biomaterials, v. 32, p. 5819–5825, 2011. doi: 10.1016/j.biomaterials.2011.04.056 DOI: https://doi.org/10.1016/j.biomaterials.2011.04.071

UCCELLI, A.; MORETTA, L.; PISTOIA, V. Mesenchymal stem cells in health and disease. Nat Rev Immunol., v. 8, p. 726–736, 2008. doi: 10.1038/nri2395 DOI: https://doi.org/10.1038/nri2395

WAGNER, J.; KEAN, T. J.; YOUNG, R. G.; DENNIS, J. E.; CAPLAN, A. I. Optimizing mesenchymal stem cell-based therapeutics. Curr Opin Biotechnol., v. 20, p. 531–536, 2009. doi: 10.1016/j.copbio.2009.08.009 DOI: https://doi.org/10.1016/j.copbio.2009.08.009

WANG, W.; YUAN, C.; LIU, Z.; GENG, T.; LI, X.; WEI, L.; NIU, W.; WANG, P. Characteristic comparison between canine and human dental mesenchymal stem cells for periodontal regeneration research in preclinical animal studies. Tissue Cell., v. 67, p. 101405, 2020. doi: 10.1016/j.tice.2020.101405 DOI: https://doi.org/10.1016/j.tice.2020.101405

YAMANAKA, S. Pluripotent stem cell-based cell therapy: Promise and challenges. Cell Stem Cell, v. 27, p. 523–531, 2020. doi: 10.1016/j.stem.2020.09.011 DOI: https://doi.org/10.1016/j.stem.2020.09.014

ZUK, P. A.; ZHU, M.; ASHJIAN, P.; DE UGARTE, D. A.; HUANG, J. I.; MIZUNO, H.; ALFONSO, Z. C.; FRASER, J. K.; BENHAIM, P.; HEDRICK, M. H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng., v. 7, p. 211–228, 2001. doi: 10.1089/107632701300062859 DOI: https://doi.org/10.1089/107632701300062859

Publicado

19/12/2024

Cómo citar

EL USO DE CÉLULAS MADRE EN LA REGENERACIÓN PERIODONTAL. (2024). RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 5(12), e5126040. https://doi.org/10.47820/recima21.v5i12.6040