VALVE TIMING CONTROL IN SPARK IGNITION ENGINES: SYSTEMATIC LITERATURE REVIEW
DOI:
https://doi.org/10.47820/recima21.v6i2.6124Keywords:
Valve timing control, Spark ignition engine, Otto cycle, Miller cycleAbstract
The text discusses the differences between the Otto and Miller cycles in internal combustion engines, highlighting how the Miller cycle, by slowing down the closing of the intake valves, improves thermal efficiency by allowing a reverse flow that reduces compression work. The development of technologies with electronic control has been crucial to increase energy efficiency and reduce greenhouse gas emissions, especially in sectors such as mobility and industry. The proposed systematic review aims to analyze the technologies applied in Otto and Miller engines, identifying their advantages and disadvantages, and monitoring the evolution of thermal machines. The work seeks to align with the UN Sustainable Development Goals, promoting more efficient engines and contributing to the reduction of emissions. The main focus is to catalog innovations in valve control in spark ignition engines, evaluating their applications and impacts.
Downloads
References
BABAYEV, Rafig; IM, Hong G.; ANDERSSON, Arne; JOHANSSON, Bengt. Hydrogen double compression-expansion engine (H2DCEE): A sustainable internal combustion engine with 60%+ brake thermal efficiency potential at 45 bar BMEP. Energy Conversion and Management, v. 264, p. 115698, 15 jul. 2022. Disponível em: https://doi.org/10.1016/j.enconman.2022.115698. DOI: https://doi.org/10.1016/j.enconman.2022.115698
BAÊTA, José Guilherme Coelho; SILVA, Thiago R. V.; NETTO, Nilton A. D.; MALAQUIAS, Augusto C. T.; RODRIGUES FILHO, Fernando Antonio; PONTOPPIDAN, Michael. Full spark authority in a highly boosted ethanol DISI prototype engine. Applied Thermal Engineering, v. 139, p. 35–46, 5 jul. 2018. Disponível em: https://doi.org/10.1016/j.applthermaleng.2018.04.112. DOI: https://doi.org/10.1016/j.applthermaleng.2018.04.112
CAO, Jiale; LI, Tie; HUANG, Shuai; CHEN, Run; LI, Shiyan; KUANG, Min; YANG, Rundai; HUANG, Yating. Co-optimization of miller degree and geometric compression ratio of a large-bore natural gas generator engine with novel Knock models and machine learning. Applied Energy, v. 352, 15 dez. 2023, p. 121957. Disponível em: https://doi.org/10.1016/j.apenergy.2023.121957. DOI: https://doi.org/10.1016/j.apenergy.2023.121957
CHEN, Bin; ZHANG, Li; HAN, Jinlin; ZHANG, Qing. A combination of electric supercharger and Miller Cycle in a gasoline engine to improve thermal efficiency without performance degradation. Case Studies in Thermal Engineering, v. 14, p. 100429, 1 set. 2019. Disponível em: https://doi.org/10.1016/j.csite.2019.100429. DOI: https://doi.org/10.1016/j.csite.2019.100429
CHENGQIAN, Li; WANG, Yaodong; JIA, Boru; ROSKILLY, Tony. Application of Miller Cycle with turbocharger and ethanol to reduce NOx and particulates emissions from diesel engine – a numerical approach with model validations. Applied Thermal Engineering, v. 150, 5 mar. 2019. Disponível em: https://doi.org/10.1016/j.applthermaleng.2019.01.056. DOI: https://doi.org/10.1016/j.applthermaleng.2019.01.056
CONFORTO, E. C.; AMARAL, D. C.; SILVA, S. L. Roteiro para revisão bibliográfica sistemática: aplicação no desenvolvimento de produtos e gerenciamento de projetos. 8º Congresso Brasileiro de Gestão de Desenvolvimento de Produto - CBGDP 2011, 2011. p. 12.
DEMIR, Usame; COSKUN, Gokhan; SOYHAN, Hakan S.; TURKCAN, Ali; ALPTEKIN, Ertan; CANAKCI, Mustafa. Effects of variable valve timing on the air flow parameters in an electromechanical valve mechanism – A cfd study. Fuel, v. 308, p. 121956, 15 jan. 2022. Disponível em: https://doi.org/10.1016/j.fuel.2021.121956. DOI: https://doi.org/10.1016/j.fuel.2021.121956
DIESELNET. Motores de ciclo Miller: Guia de tecnologia Dieselnet. [S. l.]: Dieselnet, dez. 2019. Disponível em: https ://dieselnet .com /tech /engine_miller -cycle .php .
DOGRU, B.; LOT, R.; RANGA DINESH, K. K. J. Valve timing optimisation of a spark ignition engine with skip cycle strategy. Energy Conversion and Management, v. 173, p. 95–112, 1 out. 2018. Disponível em: https://doi.org/10.1016/j.enconman.2018.07.064. DOI: https://doi.org/10.1016/j.enconman.2018.07.064
GARCÍA, Antonio; MONSALVE-SERRANO, Javier; MARTÍNEZ-BOGGIO, Santiago; WITTEK, Karsten. Potential of hybrid powertrains in a variable compression ratio downsized turbocharged VVA Spark Ignition engine. Energy, v. 195, p. 117039, 15 mar. 2020. Disponível em: https://doi.org/10.1016/j.energy.2020.117039. DOI: https://doi.org/10.1016/j.energy.2020.117039
HASAN, Ahmad O.; ELGHAWI, U. M.; AL-MUHTASEB, Ala’a H.; ABU-JRAI, A.; AL-RAWASHDEH, Hany; TSOLAKIS, A. Influence of composite after-treatment catalyst on particle-bound polycyclic aromatic hydrocarbons–vapor-phase emitted from modern advanced GDI engines. Fuel, v. 222, p. 424–33, jun. 2018. Disponível em: https://doi.org/10.1016/j.fuel.2018.02.114. DOI: https://doi.org/10.1016/j.fuel.2018.02.114
HE, Yongsheng; LIU, Jim; SUN, David; ZHU, Bin. Development of an aggressive Miller Cycle engine with extended Late-Intake-Valve-Closing and a two-stage turbocharger. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, v. 233, n. 2, p. 413–26, 1 fev. 2019. Disponível em: https://doi.org/10.1177/0954407017745220. DOI: https://doi.org/10.1177/0954407017745220
JUNG, Dongwon; LEE, Byeongseok; SON, Jinwook; WOO, Soohyung; KIM, Youngnam. Development of Gasoline Direct Injection Engine for Improving Brake Thermal Efficiency Over 44%. Journal of Engineering for Gas Turbines and Power, v. 142, n. 101005, 24 set. 2020. Disponível em: https://doi.org/10.1115/1.4048152. DOI: https://doi.org/10.1115/1.4048152
LAPES - LABORATÓRIO DE PESQUISA EM ENGENHARIA DE SOFTWARE. Tools. [S. l.]: Lapes, 2025. Disponível em: https://www.lapes.ufscar.br/resources/tools.
LI, Qingyu; LIU, Jingping; FU, Jianqin; ZHOU, Xianjie; LIAO, Cheng. Comparative study on the pumping losses between continuous variable valve lift (CVVL) engine and variable valve timing (VVT) engine. Applied Thermal Engineering, v. 137, p. 710–20, 5 jun. 2018a. Disponível em: https://doi.org/10.1016/j.applthermaleng.2018.04.017. DOI: https://doi.org/10.1016/j.applthermaleng.2018.04.017
LI, Yangtao; KHAJEPOUR, Amir; DEVAUD, Cécile. Realization of variable Otto-Atkinson cycle using variable timing hydraulic actuated valve train for performance and efficiency improvements in unthrottled gasoline engines. Applied Energy, v. 222, p. 199–215, 15 jul. 2018b. Disponível em: https://doi.org/10.1016/j.apenergy.2018.04.012. DOI: https://doi.org/10.1016/j.apenergy.2018.04.012
LIANG, Jichao; ZHANG, Quanchang; CHEN, Zheng; QIAO, Junhao; JIA, Dongdong; WANG, Rumin; MA, Qixin; SHEN, Dazi. Experimental study on combustion and emission characteristics of LIVC Miller cycle with asynchronous intake valves. Fuel, v. 329, p. 125377, 1 dez. 2022. Disponível em: https://doi.org/10.1016/j.fuel.2022.125377. DOI: https://doi.org/10.1016/j.fuel.2022.125377
MILLER, Atkinson; ATKINSON; BUDACK. Conhece os ciclos de combustão? Revista Turbo, 25 jun. 2024. Disponível em: https ://www .turbo .pt /ciclo -miller -atkinson -budack /#:~:text =Estes %20motores %20caraterizam %2Dse %20por ,efici %C3 %AAncia %20em %20detrimento %20da %20pot %C3 %AAncia .
MOHAMMED, Arshed Abdulhamed. Performance analysis of variable valve timing engine to detect some engine faults by using Hilbert Huang transform. Applied Acoustics, v. 194, p. 108775, 15 jun. 2022. Disponível em: https://doi.org/10.1016/j.apacoust.2022.108775. DOI: https://doi.org/10.1016/j.apacoust.2022.108775
PABOCAR, AMP. O que é motor do ciclo Otto: Auto Mecânica e Elétrica. [S. l.]: Pabocar, maio 2020. Disponível em: https ://pabocar .com .br /glossario /o -que -e -motor -de -ciclo -otto /#:~:text =O %20motor %20de %20ciclo %20Otto %20 %C3 %A9 %20conhecido %20por %20sua %20alta ,um %20melhor %20aproveitamento %20do %20combust %C3 %ADvel .
PAN, Junjie; KHAJEPOUR, Amir; LI, Yangtao; YANG, Jing; LIU, Weiqiang. Performance and power consumption optimization of a hydraulic variable valve actuation system. Mechatronics, v. 73, p. 102479, 1 fev. 2021. Disponível em: https://doi.org/10.1016/j.mechatronics.2020.102479. DOI: https://doi.org/10.1016/j.mechatronics.2020.102479
PATRA, Arijit; MAHAPATRA, Ananya; BAGAL, Dilip Kumar; BARUA, Abhishek; JEET, Siddharth; PATNAIK, Dulu. Comparative evaluation of 4-cylinder CI engine camshaft based on FEA using different composition of metal matrix composite. 2nd International Conference on Functional Material, Manufacturing and Performances (ICFMMP-2021), v. 50, p. 692–99, 1 jan. 2022. Disponível em: https://doi.org/10.1016/j.matpr.2021.04.477. DOI: https://doi.org/10.1016/j.matpr.2021.04.477
PEI, Yiqiang; ZHANG, Qirui; PENG, Zhong; AN, Yanzhao; SHI, Hao; QIN, Jing; ZHANG, Bin; ZHANG, Zhiyong; GAO, Dingwei. Thermal efficiency improvement of lean burn high compression ratio engine coupled with water direct injection. Energy Conversion and Management, v. 251, p. 114969, 1 jan. 2022. Disponível em: https://doi.org/10.1016/j.enconman.2021.114969. DOI: https://doi.org/10.1016/j.enconman.2021.114969
PERCEAU, Marcellin; GUIBERT, Philippe; STÉPHANE, Guilain. Zero-dimensional turbulence modeling of a spark ignition engine in a Miller cycle «Dethrottling» approach using a variable valve timing system. Applied Thermal Engineering, v. 199, p. 117535, 25 nov. 2021. Disponível em: https://doi.org/10.1016/j.applthermaleng.2021.117535. DOI: https://doi.org/10.1016/j.applthermaleng.2021.117535
PUJARI, Prashant Chandra; JAIN, Amit; NATH, Devang S.; KUMAR, Naveen. Designing, modeling, and structural analysis of a newly designed double lobe camshaft for a two-stroke compressed air engine. 3rd International Conference on Advances in Mechanical Engineering and Nanotechnology, v. 47, p. 3392–99, 1 jan. 2021. Disponível em: https://doi.org/10.1016/j.matpr.2021.07.277. DOI: https://doi.org/10.1016/j.matpr.2021.07.277
QIAO, Junhao; LIU, Jingping; LIANG, Jichao; JIA, Dongdong; WANG, Rumin; SHEN, Dazi; DUAN, Xiongbo. Experimental investigation the effects of Miller cycle coupled with asynchronous intake valves on cycle-to-cycle variations and performance of the SI engine. Energy, v. 263, p. 125868, 15 jan. 2023. Disponível em: https://doi.org/10.1016/j.energy.2022.125868. DOI: https://doi.org/10.1016/j.energy.2022.125868
RUEDA-VÁIZQUEZ, J. M.; SERRANO, J.; JIMÉNEZ-ESPADAFOR, F. J.; DORADO, M. P. Experimental analysis of the effect of hydrogen as the main fuel on the performance and emissions of a modified compression ignition engine with water injection and compression ratio reduction. Applied Thermal Engineering, v. 238, p. 121933, 1 fev. 2024. Disponível em: https://doi.org/10.1016/j.applthermaleng.2023.121933. DOI: https://doi.org/10.1016/j.applthermaleng.2023.121933
SHEN, Kai; XU, Zishun; CHEN, Hong; ZHANG, Zhendong. Investigation on the EGR effect to further improve fuel economy and emissions effect of Miller cycle turbocharged engine. Energy, v. 215, p. 119116, 15 jan. 2021. Disponível em: https://doi.org/10.1016/j.energy.2020.119116. DOI: https://doi.org/10.1016/j.energy.2020.119116
TEODOSIO, Luigi; PIRRELLO, Dino; BERNI, Fabio; DE BELLIS, Vincenzo; LANZAFAME, Rosario; D’ADAMO, Alessandro. Impact of intake valve strategies on fuel consumption and knock tendency of a spark ignition engine. Applied Energy, v. 216, p. 91–104, 15 abr. 2018. Disponível em: https://doi.org/10.1016/j.apenergy.2018.02.032. DOI: https://doi.org/10.1016/j.apenergy.2018.02.032
TRIPATHY, Srinibas; DAS, Abhimanyu; SRIVASTAVA, Dhananjay Kumar. Electro-pneumatic variable valve actuation system for camless engine: Part II-fuel consumption improvement through un-throttled operation. Energy, v. 193, p. 116741, 15 fev. 2020. Disponível em: https://doi.org/10.1016/j.energy.2019.116741. DOI: https://doi.org/10.1016/j.energy.2019.116741
WEBSTER, J.; WATSON, J. T. Analyzing the past to prepare for the future: writing a literature review. MIS Quarterly & The Society for Information Management, v. 26, n. 2, p. 13–23, 2002.
WITTEK, Karsten; GEIGER, Frank; ANDERT, Jakob; MARTINS, Mario; COGO, Vitor; LANZANOVA, Thompson. Experimental investigation of a variable compression ratio system applied to a gasoline passenger car engine. Energy Conversion and Management, v. 183, p. 753–63, 1 mar. 2019. Disponível em: https://doi.org/10.1016/j.enconman.2019.01.037. DOI: https://doi.org/10.1016/j.enconman.2019.01.037
XIN, Gu; JI, Changwei; WANG, Shuofeng; HONG, Chen; MENG, Hao; YANG, Jinxin; SU, Fangxu. Experimental study of the effect of variable valve timing on hydrogen-enriched ammonia engine. Fuel, v. 344, p. 128131, 15 jul. 2023. Disponível em: https://doi.org/10.1016/j.fuel.2023.128131. DOI: https://doi.org/10.1016/j.fuel.2023.128131
YANG, Xiaofeng; LIANG, Kun. Measurement and modelling of a linear electromagnetic actuator driven camless valve train for spark ignition IC engines under full load condition. Mechatronics, v. 77, p. 102604, 1 ago. 2021. Disponível em: https://doi.org/10.1016/j.mechatronics.2021.102604. DOI: https://doi.org/10.1016/j.mechatronics.2021.102604
YUAN, Zhipeng; FU, Jianqin; LIU, Qi; MA, Yinjie; ZHAN, Zhangsong. Quantitative study on influence factors of power performance of variable valve timing (VVT) engines and correction of its governing equation. Energy, v. 157, p. 314–26, 15 ago. 2018. Disponível em: https://doi.org/10.1016/j.energy.2018.05.135. DOI: https://doi.org/10.1016/j.energy.2018.05.135
ZHANG, Beidong; CHEN, Yexin; JIANG, Yankun; LU, Wei; LIU, Wangbin. Effect of compression ratio and Miller cycle on performance of methanol engine under medium and low loads. Fuel, v. 351, p. 128985., 1 nov. 2023; Disponível em: https://doi.org/10.1016/j.fuel.2023.128985. DOI: https://doi.org/10.1016/j.fuel.2023.128985
ZHOU, Xianjie; CHEN, Zheng; ZOU, Peng; LIU, Jingping; DUAN, Xiongbo; QIN, Tao; ZHANG, Shiheng; SHEN, Dazi. Combustion and energy balance analysis of an unthrottled gasoline engine equipped with innovative variable valvetrain. Applied Energy, v. 268, p. 115051, 15 jun. 2020. Disponível em: https://doi.org/10.1016/j.apenergy.2020.115051. DOI: https://doi.org/10.1016/j.apenergy.2020.115051
ZHOU, You; HONG, Wei; XIE, Fangxi; SU, Yan; WANG, Zhongshu; LIU, Yu. Effects of different valve lift adjustment strategies on stoichiometric combustion and lean burn of engine fueled with methanol/gasoline blending. Fuel, v. 339, p. 126934, 1 maio 2023. Disponível em: https://doi.org/10.1016/j.fuel.2022.126934. DOI: https://doi.org/10.1016/j.fuel.2022.126934
ZOU, Peng; LIU, Jingping; ZHOU, Xianjie; CHEN, Zheng; LUO, Baojun; SHEN, Dazi; DUAN, Xiongbo; FU, Jianqin. Effect of a novel mechanical CVVL system on economic performance of a turbocharged spark-ignition engine fuelled with gasoline and ethanol blend. Fuel, v. 263, p. 116697, 1 mar. 2020. Disponível em: https://doi.org/10.1016/j.fuel.2019.116697. DOI: https://doi.org/10.1016/j.fuel.2019.116697
Downloads
Published
License
Copyright (c) 2025 RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218

This work is licensed under a Creative Commons Attribution 4.0 International License.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECIMA21, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECIMA21 apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.